The role of temporal precision in the neural code and its relationship to the time scales of natural stimuli

Author Block: *D. A. Butts\(^1\), C. Weng\(^2\), J. Jin\(^2\), C. I. Yeh\(^2\), N. A. Lesica\(^1\), J. M. Alonso\(^2\), G. B. Stanley\(^1\);
\(^1\)DEAS, Harvard Univ, Cambridge, MA, \(^2\)Department of Biological Sciences, State University of New York, New York, NY.

The timing of action potentials relative to sensory stimuli can be precise down to the level of milliseconds in many sensory systems, even where this observed precision is much higher than that of the sensory stimulus being presented. Observations of such temporal precision are the root of a far ranging debate over the basis of the neural code and, specifically, what time scales are important for understanding cortical computation. We address this question by studying the inputs to the visual cortex, namely neurons in the lateral geniculate nucleus (LGN) of the anesthetized cat, which exhibit a high degree of temporal precision but are typically driven by natural visual stimuli with correlation times >30 ms. Extracellular recordings of both X- and Y-cells reveal that these neurons exhibit a high degree of temporal precision that depends to some extent on the frequency content of the stimulus being presented, with an average PSTH correlation time of 3 ms observed in 120 Hz full-field stimulus conditions (8 ms frames), and 11 ms for naturalistic stimuli that have correlation times ~30 ms. Using information theoretic techniques, we show that the amount of temporal precision determines the range of stimulus frequencies that can be reconstructed from the spike train. This implies that a ratio of at least 2:1 between the time scales of visual stimuli and the precision of the neuronal response is required to accurately represent information present in the stimulus. This study thus demonstrates a functional role of fine-time-scale features of neuronal spike trains, and has implications for cortical computation that relies on inputs that convey information structured on these fine time scales.

Author Disclosure Block: D.A. Butts, None; C. Weng, None; J. Jin, None; C.I. Yeh, None; N.A. Lesica, None; J.M. Alonso, None; G.B. Stanley, None.

Theme and Topic (Complete): C.4.g. Neural coding ; C.4.c. Subcortical visual pathways
Keyword (Complete): thalamus ; vision ; receptive field ; Information theory ; visual cortex
Presentation Preference (Complete): Poster Only
Support (Complete):
*Support: Yes
Grant/Other Support: Charles King Trust Postdoctoral Fellowship (Bank of America, Co-Trustee, Boston, MA)
Grant/Other Support: NGIA Grant HM1582-05-C-0009
Grant/Other Support: NIH Grant EY05253
Grant/Other Support: SUNY Research Foundation

Linking Group (Complete): None selected
Special Requests (Complete):
Religious Conflict?: No Religious Conflict

Status: Finalized