
Extrac�on of Electrophysiological and Behavioral Signals

Summary

Leveraging Temporal Dynamics of State Transi�ons Increases Correla�on Between Decoded and Behavioral States
Behavioral Ground Truth
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• Cortical states are well separated in low-D spaces derived from PCA and canonical LF & HF bands

• Unsupervised clustering models recapitulate behaviorally labeled clusters
• Leveraging temporal information improves cortical state estimation

◦   However, the LF/HF ratio does not robustly separate cortical states across all animals
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Behavioral Clusters in Feature Space Differ Widely Between Recordings
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Principal Component Features
Qualitatively Similar to LF & HF Bands
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Local cortical activity patterns, or cortical states, vary with behavioral context. Importantly, these cortical states profoundly 
modulate cortical function, e.g., by shaping sensory processing across various sensory modalities (Harris & Thiele 2011; Poulet 
& Crochet 2019). Though there has been much effort to characterize cortical states, they are typically defined in an ad hoc 
manner that is unsuitable for robust, real-time estimation. For example, a common approach is to threshold on the ratio of 
power between a canonical low-frequency (LF; 1-10 Hz) and high-frequency (HF; 30-90 Hz) band (Sederberg, et al. in prep.). 

Here we use data-driven approaches to estimate cortical states from real-time accessible LFP signals. We build unsupervised 
models of cortical state that leverage both the statistical and temporal structure of the data to increase robustness across 
animals. Finally, we use behavioral videography as a ground truth proxy for cortical state to evaluate model efficacy. 

Background

Machine Learning Approaches for Estimating Cortical States in the Awake Mouse

•  Expanded state space
▪  10 “substates” map 

  to 1 “superstate”
•  Limited connectivity
•  Keeps track of time 

 spent in state
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Cortical State Decoding Compared to Behavior
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• CAIC = negative log likelihood 
+ model complexity

• ↑ CAIC = complex model
• ↓ CAIC = better fit

Two Gaussians Consistently Fit the Statistical Structure
in Feature Space
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xt - state at time t
ot - observation at time t
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•   Future Directions: (1) Real-time Algorithms, (2) Multichannel LFP, (3) Pupillometry

Future Direc�ons and Preliminary Results
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Real-time Simulation in Simulink Agrees with Offline Estimation
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