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Abstract
Objective. The rapid acceleration of tools for recording neuronal populations and targeted
optogenetic manipulation has enabled real-time, feedback control of neuronal circuits in the brain.
Continuously-graded control of measured neuronal activity poses a wide range of technical
challenges, which we address through a combination of optogenetic stimulation and a state-space
optimal control framework implemented in the thalamocortical circuit of the awake mouse.
Approach. Closed-loop optogenetic control of neurons was performed in real-time via stimulation
of channelrhodopsin-2 expressed in the somatosensory thalamus of the head-fixed mouse. A
state-space linear dynamical system model structure was used to approximate the light-to-spiking
input-output relationship in both single-neuron as well as multi-neuron scenarios when recording
from multielectrode arrays. These models were utilized to design state feedback controller gains by
way of linear quadratic optimal control and were also used online for estimation of state feedback,
where a parameter-adaptive Kalman filter provided robustness to model-mismatch.
Main results. This model-based control scheme proved effective for feedback control of
single-neuron firing rate in the thalamus of awake animals. Notably, the graded optical actuation
utilized here did not synchronize simultaneously recorded neurons, but heterogeneity across the
neuronal population resulted in a varied response to stimulation. Simulated multi-output feedback
control provided better control of a heterogeneous population and demonstrated how the
approach generalizes beyond single-neuron applications. Significance. To our knowledge, this work
represents the first experimental application of state space model-based feedback control for
optogenetic stimulation. In combination with linear quadratic optimal control, the approaches laid
out and tested here should generalize to future problems involving the control of highly complex
neural circuits. More generally, feedback control of neuronal circuits opens the door to adaptively
interacting with the dynamics underlying sensory, motor, and cognitive signaling, enabling a
deeper understanding of circuit function and ultimately the control of function in the face of
injury or disease.

1. Introduction

Over the last two decades, there has been a rapid
expansion of tools and technologies for recording the
large-scale activity within and across brain structures
at single neuron resolution [1, 2]. In parallel, the
development of optogenetics provided the ability to
optically excite or inhibit neural activity in a cell-type
specific manner [3]. Together, these advances in the
ability to ‘read’ or ‘write’ the neural code have led

to a wide range of discoveries of the circuit mechan-
isms underlying sensory, motor, and cognitive pro-
cesses [4]. The integration of recording and opto-
genetic stimulation techniques, however, has received
comparatively little attention until recently ([5–13];
for review [14]), and in most cases these closed-
loop systems utilize event-triggered or on-off con-
trol rather than continuous feedback. While feed-
back control is the engineering cornerstone for the
function of a wide range of complex technologies
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ranging from communication to flight, applying this
perspective in the nervous system remains more the-
oretical [15–19] than experimental. In this study,
we establish a general framework for continuously
modulated closed-loop optogenetic control of neur-
onal circuits, where optical actuation is determined
in real-time by comparing measured neuronal spik-
ing to target activity. This work opens up possibilities
for investigation of poorly understood mechanisms
of the underlying circuitry and for adaptively inter-
acting with the circuit dynamics within and across
brain regions that constantly change in response to
the internal and external environments.

Electrical stimulation has been the gold stand-
ard for manipulating the activity of neurons at fast
time-scales, and remains the basis for clinical inter-
ventions like deep brain stimulation [20]. However,
this approach suffers from lack of specificity while
also typically precluding simultaneous measurement
of the activity of the neurons being stimulated. While
not yet clinically viable, optogenetics offers an altern-
ative approach that enables cell-type specificity, bi-
directional actuation, the ability to simultaneously
stimulate and obtain electrophysiological recordings,
and a potentially lesser degree of unnatural synchron-
ization of the local population [21]. This presents an
attractive toolbox for the development of continu-
ous, feedback control strategies where stimulation is
continuouslymodulated based on real-timemeasure-
ments of the local neuronal activity. There has been a
range of studies where previously-determined stim-
ulation is triggered based on recorded activity in a
reactive closed-loop fashion [8–11]. In addition to
event-triggered control, a recent study has also used
on-off closed-loop control to gate photostimulation
when recorded neuronal activity was below target
levels [13]. Although these approaches to stimula-
tion have proven effective for their uses, they are fun-
damentally different from the continuously-graded
feedback control we describe here, where stimula-
tion is updated on a moment-by-moment basis as
a function of the current and past measured neural
activity. In previous studies, we have developed and
demonstrated strategies for closed-loop optogenetic
control of spiking activity of neurons in a cultured
network and single neurons in vivo in the anesthetized
brain [5, 7].While laying the conceptual groundwork,
these approaches do not scale well to neuronal pop-
ulations and do not take advantage of more modern
approaches in control theory. Additionally, these pre-
vious studies had not yet applied optogenetic control
in the context of wakefulness.

In this study we bridge the gap between opto-
genetics and established paradigms of more modern
control theory by utilizing state-space models to cap-
ture single- and multi-neuron responses to optogen-
etic stimulation and employing optimal control to
design the control loop for driving desired neuronal
activity. Specifically, precise manipulation of neurons

was carried out via optical activation of the excit-
atory opsin channelrhodopsin-2 (ChR2) expressed
in the somatosensory thalamus of the awake, head-
fixed mouse. A feedback controller updated light
intensity in real-time based on simultaneous elec-
trophysiological measurements of the thalamic neur-
ons being manipulated. A linear dynamical system
model structure was used to approximate the light-
to-spiking input-output relationship in both single-
neuron as well as multi-neuron scenarios in cases
where multiple neurons were measured simultan-
eously usingmultielectrode arrays. These linear state-
space models were used in combination with linear
quadratic optimal control to design feedback control-
ler gains for the purpose of regulating thalamic firing
around a desired target rate. The models were also
used online for estimation of state feedback, using
a parameter-adaptive Kalman filter for robustness to
model-mismatch. The resulting controller-estimator
feedback loop was deployed experimentally by way of
a custom-written program running in real-time. This
control scheme provided effective optogenetic con-
trol of firing rate in the awake brain, owing to the
robustness tomodel accuracy granted by a parameter-
adaptive Kalman filter that estimated a stochastically-
varying process disturbance. Feedback control using
this estimator resulted in very good firing rate track-
ing experimentally for the single neuronswhose activ-
ity was used for feedback. By comparison, control was
not as effective for other simultaneously-measured
neurons not used for feedback. To investigate the gen-
eralizability and efficacy of these methods for future
multi-output control scenarios, we demonstrate their
application to multi-neuron feedback control of a
population in simulation.

2. Methods

2.1. Animal preparation
All procedures were approved by the Institutional
Animal Care and Use Committee at the Georgia
Institute of Technology and were in agreement with
guidelines established by the NIH. Experiments were
carried out using either C57BL/6 J mice that were
virally transfected to express channelrhodopsin-2
(ChR2) or by single-generation crosses of an Ai32
mouse (Jax) with an NR133 cre-recombinase driver
line (Jax) which grants better specificity of ChR2
expression in ventral posteromedial/posterolateral
thalamus [22]. In the case of viral transfection, ChR2
expression was targeted to excitatory neurons in the
thalamus via stereotactic injection relative to bregma
(approximately 2 × 2 × 3.25 mm caudal × lateral
× depth) using 0.5 µL of virus (rAAV5/CamKIIa-
hChR2(H134R)-mCherry-WPRE-pA; UNC Vector
Core, Chapel Hill, NC) at a rate of 1 nL/s.

At least three weeks prior to recordings, a custom-
made metal plate was affixed to the skull for head
fixation, and a recording chamber was made using
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dental cement while the animals were maintained
under 1%–2% isoflurane anesthesia [23]. After allow-
ing a week for recovery, mice were gradually habitu-
ated to head fixation over the course of at least
five days before proceeding to electrophysiological
recordings and optical stimulation. On the day of
the first recording attempt, animals were again anes-
thetized under 1%–2% isoflurane and a small crani-
otomy (1–2mm in diameter) was centered at approx-
imately 2 × 2 mm caudal and lateral of bregma.
The animals were allowed to recover for a minimum
of three hours before awake recording. At the time
of recording, animals were head-fixed and either a
single electrode or an electrode array coupled to an
optic fiber (section 2.2) was advanced through this
craniotomy to a depth between 3–4 mm for thalamic
recording and stimulation. Between repeated record-
ing attempts, this craniotomy was covered using
a biocompatible silicone sealant (Kwik-Cast, WPI).
Following termination of recordings, animals were
deeply anesthetized (4%–5% isoflurane) and sacri-
ficed using a euthanasia cocktail.

2.2. Experimental setup
All optical stimuli were presented deep in the
brain via a 200 or 100 µm diameter optic fiber
attached to a single tungsten electrode (FHC) or to
a 32-channel NeuroNexus optoelectric probe in a
25 µm-spaced ‘poly3’ configuration (A1x32-Poly3-
5 mm-25 s-177-OA32LP, NeuroNexus Technologies,
Inc.), respectively. Command voltages were gener-
ated by a data acquisition device (National Instru-
ments Corporation) in a dedicated computer running
a custom-written RealTime eXperimental Interface
(RTXI, [24]) program at 1 ms resolution. Command
voltages were sent to a Thorlabs LED driver, which
drove a Thorlabs M470F3 LED (470 nm wavelength
blue light) connected to the 100-200 µmoptical fiber.
A commercially available data acquisition device and
processor (TuckerDavis Technologies RZ2)measured
extracellular electrophysiology. This system was used
for single-channel PCA spike sorting, binning, and
sending these binned spike counts at 2 ms resolu-
tion to the computer running RTXI over ethernet via
UDP. The computer running RTXI for realtime con-
trol listened for datagrams over ethernet and linearly
interpolated from 2 ms to the operating resolution of
1 ms. All told, the closed-loop processing loop was
approximately 10 ms.

As mentioned above, the control and estimation
algorithms were carried out in real-time at 1ms resol-
ution using a custom-written program. The program
consisted of an RTXI ‘plugin’ linked against a C++
dynamic library thatwas responsible for online estim-
ation of state feedback (section 2.5) and the gener-
ation of control signals (section 2.6). This function-
ality was provided as part of a state-space controller
C++ class. The RTXI plugin forwarded the reference,
or target, firing rate, model parameters, and feedback

controller gains to a state-space controller object, and
the controller returned an updated control signal each
time it was queried by RTXI. This control signal was
then routed by RTXI to the LED driver via a DAC (see
above). All linear algebra was carried out using the
C++ library Armadillo [25].

2.3. Offline spike sorting
For online control applications, single-channel PCA-
based spike sorting was carried out in real-time using
a commercially available electrophysiology system
(Tucker Davis Technologies RZ2). Beyond tetrode
recordings, spike sorting from high-density electrode
arrays requires amulti-step process that is not feasible
within the timescale of experiments with head-fixed
awake animals. Kilosort2 [26] was used for all offline
spike sorting, including single-channel recordings, in
which case spatial whitening and common mode ref-
erencing steps were disabled. Initial sorting by Kilo-
sort2 was then manually curated (additional mer-
ging/splitting of clusters) using the phy viewer. After
manual curation, any clusters that met the following
criteria were considered single units and used in this
study: sub 1 ms ISI violations of < 0.5%, sub 2 ms ISI
violations of < 2%, and mean waveform amplitude-
to-standard-deviation ratio > 4.

2.4. Mathematical modeling
Linear and Gaussian state space models were used
in designing feedback controller gains before exper-
iments as well as during the experiment as part of the
state feedback estimator. These models were fit off-
line to neuronal data before experimental application
of optogenetic control and were fit at 1 ms time resol-
ution, which was also the operating resolution of the
RTXI software used for real-time control and estim-
ation during experiments. In addition to the single-
unit quality selection criteria in section 2.3, models
were only fit to putative single units (called ‘neur-
ons’ hereafter) whose activity was significantly mod-
ulated by optical stimulation. Following Sahani and
Linden [27], a neuron’s response was considered sig-
nificantly modulated if the amount of ‘signal power’
in the response was greater than one standard error
above zero. Note that Sahani and Linden [27] define
‘power’ as the variance in time.We will refer to ‘signal
power’ as ‘signal variance’ in this study.

The underlying dynamics of neural activity were
approximated as a linear dynamical system (LDS) in
which a number of latent ‘state’ variables, represented
as the vector x ∈ Rn, evolve linearly in time:

xt = Axt−1 +But−1 +µt−1 +wt−1 , (1)

where ut ∈ R1 is the optical stimulus at time t, µt ∈
Rn is a process disturbance,wt ∼N (0,Q) is Gaussian
noise of covarianceQ,A ∈ Rn×n is the state transition
matrix, and B ∈ Rn×1 is the input vector (generally a
matrix). Note that the disturbance,µ, was assumed to
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be zero duringmodel fitting. However, for robustness
in control applications,µwas allowed to be non-zero
and to vary stochastically over time for the purpose of
online state estimation (section 2.5.2).

2.4.1. Gaussian linear dynamical system
Linear and Gaussian models were used for con-
trol system design and implementation because of
the relative simplicity and ubiquity of linear control
approaches. In this case, the output of an LDS y ∈ Rp

is modeled as a linear transformation of a latent state
x and is assumed to be corrupted by additive Gaus-
sian noise before measurement in the form of binned
spiking, z ∈ Rp:

yt = Cxt + d , (2)

zt = yt + vt , (3)

where C ∈ Rp×n is the output matrix, d ∈ Rp is an
output bias term that describes the baseline firing
rates of the p outputs (here, neurons), and vt ∼
N (0,R) is zero-mean Gaussian measurement noise
of covariance R ∈ Rp×p. As a system whose dynam-
ics evolve linearly and whose observation statistics
are assumed to be additive/Gaussian, this is termed
a Gaussian LDS, or GLDS [28]. The bias term d
was estimated as the average firing rate of each
channel during spontaneous periods without optical
stimulation, and GLDS models were fit relating ut
and (zt − d) using subspace identification (N4SID
algorithm, [29]).

2.4.2. Poisson linear dynamical system
While GLDSmodels were used for control and estim-
ation, we evaluated their performance in capturing
light-driven firing rate relative to a spiking model. As
it is a more accurate statistical observation model for
spike count data, we fit linear dynamical systems with
Poisson observations, so-called Poisson LDS, or PLDS
[28, 30]. In this case, the underlying latent state(s) of
the LDS is mapped to an output firing rate by a rec-
tifying exponential non-linearity and the measured
spike counts are assumed to be drawn from a Poisson
process driven at the given rate:

yit = exp(γ ixt + di) , (4)

zit|yit ∼ Poisson
[
yit
]
, (5)

where yit is the firing rate and zit the measured spike
counts of the ith output at time t. For the purposes
of this study, PLDSmodels were fit by first estimating
a GLDS model. The row vectors γ i that describe the
log-linear contributions of each state to output firing

rates were assumed to be scaled versions of the GLDS
output matrix rows: i.e. for the ith output,

γi = gici , (6)

where ci is the corresponding row of the GLDS output
matrix C.

Note that at each time point the outputs are stat-
istically independent conditioned on the state, allow-
ing the output function parameters to be estimated
in an output-by-output fashion. The resulting 2p-
parameters of the PLDS output function were fit by
maximizing the log-likelihood of the model one out-
put at a time, given the predicted state sequence:

θ∗
i = [gi di]

∗
= argmax

θi
Li (θi) , (7)

θ∗
i = argmax

θi

T∑
t=1

(
zit logy

i
t|xt (θi)− yit|xt (θi)

)
, (8)

where θ∗
i are the parameters and Li the log-

likelihood of the model for the ith output, (·)∗

denotes the result of the optimization, and

yit|xt (θi) = exp(gicixt + di) . (9)

This optimization was carried out iteratively until
parameter convergence for each output by analytic-
ally solving for di and numerically solving for g i using
Newton’s method in a manner analogous to Smith
et al [30].

2.4.3. Finite impulse response model
While state-space models were used in this study,
finite impulse response (FIR) models were also fit
in order to provide empirical estimates of the light-
to-spiking responses that did not depend on choices
such as number of latent states. Moreover, FIR mod-
els, often termed (‘whitened’) spike-triggered average
(STA) models, are widely used to characterize neur-
onal responses to stimuli [31], so they are are a more
familiar model type for much of the neuroscience
community and provide a useful point of comparison
for state-space models which are less frequently used
in this context. Contrary to state-space models whose
outputs share a set of dynamical states, in FIR models
the optical stimulus (u) is related to the output firing
rates (y) of p neurons in the following manner:

yt = FUt + d , (10)

where Ut is a q-dimensional column vector of stimu-
lus history up to time step t inclusive,

Ut =


ut
ut−1

...
ut−q−1

 , (11)
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fi is the impulse response of the ith output, compris-
ing the rows of F, and d is the output bias as before in
the case of the GLDS model. Note that this is effect-
ively a convolution of a set of p FIR filters with the
stimulus. The output y is assumed to be corrupted by
additive Gaussian noise before being observed/meas-
ured in the form of binned spiking, z:

zt = yt + vt , (12)

where vt is the measurement noise as described
in the case of the GLDS model previously. This
FIR model was fit by ordinary least squares lin-
ear regression between (zt − d) and corresponding
100 ms stimulus histories, i.e. Ut ∈ R100 at ∆= 1 ms
sample period.

2.4.4. Optical stimulus for model fitting
While the approaches in this study can generalize
to multi-input systems (e.g. multiple light sources
spread spatially ormultiple wavelengths), only single-
input systems are considered and tested here. As in
Bolus et al [7], a repeated 5-s instantiation of 1ms res-
olution uniform optical noise was used to stimulate
spiking activity formodel fitting.While the amplitude
of this stimulus varied across experiments based on
perceived neuronal sensitivity to light, the average
range of this uniform-distributed noise was from 0
to 14.4 mW/mm2, and the same pattern of noise was
always presented. State-space models were fit using
data from the first 2.5 s of each stimulus trial, while
the remaining 2.5 s of stimulation were held out and
used to assess model performance.

2.5. Estimator
GLDS models were used both offline for designing
the control law and online for estimating state feed-
back. For online estimation, two variants of GLDS
model-based state estimation are considered. The
first is a standard implementation of the Kalman fil-
ter (section 2.5.1, [32, 33]). Another variant of this
approach that was used to achieve greater robustness
to plant-model mismatch was to apply Kalman fil-
tering to estimate a parameter-augmented state vec-
tor (section 2.5.2), which we will refer to here as a
parameter-adaptive Kalman filter but has elsewhere
been described as a proportional-integral (PI) Kal-
man filter [34, 35].

2.5.1. Kalman filtering
The Kalman filter proceeds by alternating between
a one-step prediction of the state and updating this
estimate when the corresponding measurement is
available [33]. The filter has two design parameters
which are reflected in the GLDS model struc-
ture (Equations (1) & (3)): the covariances of the pro-
cess and measurement noise, or Q and R, respect-
ively. The value for R was taken from fits of the GLDS
models to training data. In analyzing the performance

of the Kalman filter on previously collected spiking
data, the fit matrix for Q was rescaled to minimize
the mean squared error (MSE) between the Kalman-
filter-estimated firing rate and an output of a model-
free estimation method: smoothing the spikes with a
25 ms Gaussian window.

At each time point, a one-step prediction of the
estimated state mean (x̂), state covariance (P), and
output (ŷ) were calculated:

x̂t|t−1 = Ax̂t−1|t−1 +But−1 , (13)

Pt|t−1 = APt−1|t−1A
⊤ +Q , (14)

ŷt|t−1 = Cx̂t|t−1 + d , (15)

where (̂·) denotes estimates, (·)t|t−1 denotes the pre-
diction at time t, given data up to time t− 1, and (·)t|t
denotes filtered estimates. Recall that all model para-
meters were fit to optical noise-driven spiking activ-
ity, and note that µ was assumed to be zero unless
adaptively re-estimated (section 2.5.2). The one-step
prediction was updated taking into account the latest
measurement as

Kest
t = Pt|t−1C

⊤ (
R+CPt|t−1C

⊤)−1
, (16)

x̂t|t = x̂t|t−1 +K
est
t

(
zt − ŷt|t−1

)
, (17)

Pt|t =
(
I−Kest

t C
)
Pt|t−1 , (18)

ŷt|t = Cx̂t|t + d , (19)

where Kest
t is the Kalman filter gain and I denotes an

identity matrix.

2.5.2. Parameter-adaptive Kalman filtering
For robustness of state estimation to plant-model
mismatch, the state and a model parameter were
jointly re-estimated by the Kalman filter. Specific-
ally, the mean of the process disturbance, µ, was
assumed to vary stochastically over time as a random
walk:

µt = µt−1 +w
µ
t−1 , (20)

where wµ
t ∼N (0,Qµ) is noise disturbing the

stochastic evolution of µ. The covariance of this pro-
cess Qµ effectively sets the timescale of adaptive re-
estimation of µ. To jointly estimate this disturbance,
the state and model parameters were augmented as
follows:

xaugt =

[
xt
µt

]
, (21)
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Aaug =

[
A I
0 I

]
, (22)

Qaug =

[
Q 0
0 Qµ

]
, (23)

Baug =

[
B
0

]
, (24)

Caug =
[
C 0

]
. (25)

In general, such joint parameter-state estimation
would require the use of the extended Kalman fil-
ter (e.g. [36]). However, in this case, the augmen-
ted dynamics and output equations remain linear
with respect to the augmented state. Therefore, Kal-
man filtering was carried out on this augmented form
of the state and GLDS model as detailed before in
section 2.5.1. For the purposes of this study,Qaug was
assumed to be a diagonalmatrix. In analyzing the per-
formance of this adaptive Kalman filter on spiking
data, the elements of Qaug were scaled to minimize
the mean squared error between the Kalman-filter-
estimated firing rate and the Gaussian smoothed
estimate as before (section 2.5.1).

2.6. Controller
While the state-space modeling and control frame-
work can be readily used for trajectory tracking, the
control objective in this study was holding the out-
put neuronal firing to a fixed target, or reference, rate
(r), corresponding to a nonzero-setpoint regulation
problem [37], also described here as ‘clamping’.

2.6.1. Control setpoint
In order to use state feedback for the case where the
target is an output, we first calculated the state and
optical input that would be required to achieve the
target firing rate, r. Since this was a regulation prob-
lem, we calculated the state and input for achiev-
ing the target at steady-state. This steady-state set-

point
[
y∗⊤ x∗⊤

]⊤
was calculated using models fit to

previously collected optical noise driven data. This
problem was solved by linearly-constrained least-
squares [38], where the objective was to minimize
the 2-norm ||y∗ − r||2, subject to the system being
at steady-state x∗ = Ax∗ +Bu∗. The control signal
required to achieve the target at steady state, u∗, was
served as a nominal control signal, about which feed-
back controller gains modulated light intensity. For
single-input/single-output (SISO) applications, there
was a solution that resulted in zero-offset tracking (i.e.
y∗ = r). However, for multi-output control where the
responses to control are heterogeneous, the steady-
state solutions do not result in zero-offset track-
ing, but rather the least-squares compromise across
neurons.

2.6.2. Linear quadratic regulator design
Linear quadratic optimal control was used to design
controller gains Kctrl for non-zero-set-point regula-
tion [37]:

ut = u∗ −Kctrl

[
xt − x∗∑t

i=1 (yi − y∗)∆

]
, (26)

where both instantaneous state error (top row) as well
as integrated output error (bottom row) were used
for feedback to ensure robustness of control. ∆ is
the sample period (1 ms). The controller gains were
chosen to minimize a quadratic cost (J) placed on
these tracking errors and on deviations in the con-
trol [37, 39]:

J
(
Kctrl

)
=

∞∑
t=1

1

2

[
xt − x∗∑t

i=1 (yi − y∗)∆

]⊤
×Qctrl

[
xt − x∗∑t

i=1 (yi − y∗)∆

]
+

1

2
(ut − u∗)⊤ rctrl (ut − u∗) , (27)

where Qctrl is the weight placed on minimizing
squared instantaneous state error and integrated out-
put error,

Qctrl =

[
C⊤C 0
0 qintI

]
, (28)

and rctrl is the weight placed on control deviations.
Minimization of this quadratic cost function is lin-
early constrained by the error system dynamics[

xt − x∗∑t
i=1 (yi − y∗)∆

]
=

[
A 0
C∆ I

]
×
[

xt−1 − x∗∑t−1
i=1 (yi − y∗)∆

]
+

[
B
0

]
(ut−1 − u∗) . (29)

This optimization was carried out numerically by
backward recursion of the discrete-time matrix Ric-
cati equation until convergence [37] or calculated
using the MATLAB function dlqr() (MathWorks).
Generally, a stabilizing solution was not possible
for multi-output control scenarios with integral
action because of nonzero output error; however, the
numerical solution for feedback controller gains still
converged in practice.

2.6.3. Experimental SISO control
First-order GLDS models fit to previously collec-
ted spiking responses to optical noise were used off-
line for designing feedback controller gains, Kctrl,
(section 2.6.2) and online for the parameter-adaptive
Kalman filtering (section 2.5.2). The diagonal ele-
ments of the assumed process noise covariance,Qaug,
used in the parameter-adaptive Kalman filter ranged
from 1× 10−9 to 5× 10−8. For controller design, the
quadratic weight chosen for integral error

(
qint

)
was

1× 102, while the weight placed on control deviation,
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rctrl, ranged from 1× 10−4 to 1× 10−3. The online-
sorted spiking data fed back to the controller was used
to assess performance of the control scheme; however,
in cases where a 32-channel electrode array was used
for recording, offline-sorted population activity was
inspected to understand the local effects of closing the
loop around a given putative single neuron.

2.6.4. Simulated SIMO vs. SISO control
In addition to experimental validation in the SISO
case, the state-space modeling, estimation, and con-
trol methods were also applied to a simulated multi-
output control problem in which the objective was
to push the outputs toward a common target firing
rate. In this case, 5th-order models were used. When
fitting GLDS models to SIMO datasets, we found
that there was often great heterogeneity in input–
output gain across outputs. Therefore, a two-output
PLDS model was the simulated system being con-
trolled, whose second output (‘neuron 2’) was a gain-
modulated version of the first (‘neuron 1’), before
exponentiation and spike generation. The dynamics
and the first output channel of this PLDS came from
a fit to an example SISO dataset. The log-linear gain
of neuron 2 was swept between 0.1 and 3 times that
of neuron 1. A multi-output controller and estimator
were designed using a 2-output GLDS model fit to
simulated PLDS data, where optical noise stimulated
the PLDS in the case where the both neurons had the
same gain. The neuron-averaged mean squared error
performance of the SIMO control loopwas compared
to the SISO scenario when only neuron 1 data was
fed back. For both SIMO and SISO control loops, the
diagonal elements of the process noise covariance for
the parameter-adaptive Kalman filter (Qaug) were all
taken as 1× 10−6, while the weights placed on quad-
ratic cost of integrated tracking error (qint) versus
control deviation (rctrl) were 1× 102 and 1× 10−3,
respectively.

2.7. Performance measures
Various measures of performance are used through-
out this study to quantify goodness of fit for state-
space models and the effectiveness of the estimators
as well as the controller.

2.7.1. Model performance
The performance of GLDS and PLDS models were
assessed using variance of the raw 1 ms binned
PSTH explained in the held-out second half of each
5 second trial of optical noise stimulation. The vari-
ance explained was either taken as a proportion of the
variance in the PSTH (pVE), or relative to the amount
of ‘signal’ or explainable variance in the PSTH (pSVE,
[27]). These two metrics were computed for each
SISO and SIMO dataset for 5th order PLDS models
and 1st and 5th order GLDS models.

2.7.2. Estimator performance
Because the control objective in this studywas to track
a constant reference firing rate, it was important that
the estimator achieve low bias; otherwise, the integ-
ral action of the controller cannot serve its ideal pur-
pose to eliminate steady state tracking errors. There-
fore, the performance metric considered here for the
online estimator was the squared bias of the single-
trial-estimated firing rate compared to the corres-
ponding spiking responses to 5-second step inputs of
light.

2.7.3. Control performance
To assess controller performance, the mean squared
error (MSE) as well as squared bias between the
achieved single-trial firing rate and the reference
firing rate were calculated. Single-trial firing rate
was taken as the online-sorted spike train fed back
to the controller, smoothed offline with a 25 ms
standard deviation Gaussian window. While MSE
takes into account variance, we separately considered
across-trial variability using the Fano factor [40]
of spike counts in a 500 ms sliding window, a
mean-normalized measure of spike count variability.
Finally, in cases where a 32-channel multielectrode
array was used for recording local population activ-
ity, the degree of synchrony between simultaneously
recorded neurons was quantified in a manner sim-
ilar to Wang et al [41]. Briefly, a cross-correlogram
was constructed by binning the relative spike times
of simultaneously recorded neuron pairs. To quantify
degree of synchrony, the number of correlated events
in a ±7.5 ms window (Ncc) was normalized by the
total number of spikes in a ±50 ms window (Ntot):

synchrony=
Ncc

Ntot
. (30)

Allowing 1-s for non-steady state performance, all
four of these performance metrics were calculated in
a 4-s period of time during closed-loop control. As a
point of comparison, the same metrics were also cal-
culated using 4-s periods of spontaneous data recor-
ded between trials of closed-loop stimulation.

3. Results

In this study, we applied a model-based optimal
control framework to the experimental control of
neural activity in vivo using optogenetic stimula-
tion. Specifically, we utilized the ventral postero-
medial (VPm) region of the sensory thalamus in
the vibrissa/whisker pathway of the awake mouse
as an experimental model system, where single-unit
electrophysiological recordings were obtained while
optically stimulating light sensitive channels with an
inserted optical fiber. The optimal control framework
relies on a state-space representation of the optically-
driven dynamics of neural activity. This model is used
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both for the offline design of the optimal control-
ler and for the online estimation of state feedback.
Although experimental results are presented from
this specific pathway and brain region, the approach
is directly applicable to others. Furthermore, while
the methods used here should generalize to future
multi-input and multi-output (MIMO) applications,
we first focus on the single-input and single-output
(SISO) case where the measured outputs were single-
unit spiking activity and the control objective was
to track step commands (i.e. clamp neural activ-
ity at a fixed target firing rate). In the context of
these experiments, we were able to use a linear and
Gaussian model to approximate light-driven spiking
responses for the purposes of controlling firing rate;
moreover, we found that a low order approxima-
tion of the neural dynamics was sufficient at least for
the slow timescale control/estimation objectives stud-
ied here. In experiments wheremulti-electrode arrays
were employed to record thalamic activity, we found
that simultaneously-recorded neurons responded to
optical stimulation with a high degree of diversity,
motivating investigation of applicability of this con-
trol framework tomulti-output scenarios.We applied
this framework in a simulated single-input/multi-
output (SIMO) scenario, where the “output” con-
sisted of the activity of multiple simultaneously-
recorded neurons, and the control objective was to
force the population activity as close as possible to
a common target firing rate. Feeding back multi-
output population activity to the controller enhanced
the robustness of the control scheme’s ability to drive
the collective population activity to a desired target in
the face of heterogeneity in sensitivity to light.

Figure 1(a) illustrates the control scheme that was
implemented experimentally in the awake, head-fixed
mouse, where an ‘optrode’ consisting of an electrode
attached to an optical fiberwas inserted into theVPm.
Given binned single-unit spiking activity, control and
estimation was carried in realtime at 1 ms resolu-
tion using custom-written software (section 2.2). We
designed an estimator that generated an online estim-
ate of the state of neural activity, and a feedback con-
troller that maintained a target firing rate in the face
of potential disturbances, such as reafferent sensory
input (i.e.whiskermotion) and changing brain states.

To develop a generalizable control methodology,
we applied a state-space model-based control and
estimation scheme where the model is used not only
in the design phase but as an online estimator for
the control scheme (figure 1(b)). Themodel structure
utilized here was a linear dynamical system (LDS),
where optical input(s) modulate the activity of lat-
ent state variables. More specifically, for the purposes
of this study we employed a Gaussian linear dynam-
ical system (GLDS), in which a linear combination of
the states is observed after being corrupted by additive
Gaussian noise (figure 1(c)). Here, the output of the
model was either single or multi-neuron firing rate,

although in principle these same techniques could be
applied to other neural signals of interest such as local
field potential or voltage/calcium signals. Figure 1(d)
illustrates the workflow for the closed-loop experi-
ments. Neuronal responses to optical noise recorded
in previous experiments were used to fit state-space
models and the control system, utilized in subsequent
closed-loop control experiments to be presented in
detail in later sections, highlighting the generalizab-
ility of the approach across animals.

3.1. GLDS captures optical noise-driven responses
The control framework used here depends on amodel
of the underlying dynamics for both the design of
the controller and online state estimation to execute
the control strategy. As we have previously described
in a simpler, classical control framework [7], feed-
back control is robust to a degree of model inac-
curacy. Therefore, there is an application-specific
balance to be struck between model complexity/fi-
delity and simplicity. Here, we first asked to what
extent a GLDS model could predict the experiment-
ally observed SISO firing rate modulation with opto-
genetic stimulation, as this would provide a relatively
simplemodeling framework that is attractive in terms
of its widespread applicability and ease of implement-
ation. Since the measurements were spike counts in
1 ms bins at relatively low firing rates, a Gaussian
observation model is an obvious violation of these
statistics. For comparison, we also fit an LDS model
whose observation model is Poisson (PLDS), which
has been utilized in a range of studies for describing
the dynamics of spiking neurons (figure 2(a)).

In fitting a state-space model, the order of the
model (the dimensionality of the latent state vec-
tor) must be specified. To ascertain the appropri-
ate order of these models, we pooled together noise-
driven response data from 37 neurons that were all
significantly excited by the optical stimulus, and fit
GLDSmodels to this population. For comparison, we
separately fit a finite impulse response (FIR) model
to the same population dataset (see section 2.4),
as it is widely used in the neuroscience literature
[31, 42]. Models were fit from recorded responses
to white-noise optical inputs (section 2.4.4). Shown
in figure 2(b) are the impulse responses for both
the GLDS (red) and FIR (black) models, as a head-
to-head comparison. This can be interpreted as the
model prediction of the instantaneous firing rate
in response to a light impulse input at time zero.
Prominent in both is an initial peak at approxim-
ately 3 ms reflecting a relatively short latency excit-
ation, followed by a subsequent drop below baseline
at 7–8 ms reflecting a post-excitatory inhibition. We
found that a 4th to 5th order state-space model was
sufficient for these data, striking a balance between
goodness of fit and model complexity. Note that the
above analysis was restricted to thalamic neurons that
were found to be excited by the optical input, which
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Figure 1. Closed-loop optogenetic control using state-space linear dynamical systemsmodels. (a) Experimental setup. (b)
Control system block flow diagram. Spiking activity is fed back to a model-based estimator (‘EST’), which provides online
estimates of the underlying state of the system (x) and the output (y), which is firing rate in the current application. The
controller (‘CTRL’) uses a model to generate the system setpoint [y∗⊤ x∗⊤ u∗⊤]⊤ that corresponds to user-specified reference
firing rate (r). An updated control signal is generated using feedback controller gains and the error between this setpoint and the
online estimates of the system state/output. The updated control signal is sent to an LED driver to modulate light intensity. (c)
Structure of the Gaussian LDS Model. The GLDS used throughout the control loop consists of a linear dynamical system (LDS)
describing the evolution of the state (x) and a linear remapping of x to the output firing rate and eventually measured spiking (z).
This model is used for single-neuron and multi-neuron estimation/control. (d) Workflow for closed-loop experiments. Neuronal
responses to optical noise recorded in previous experiments (left) were used to fit state-space models and design the control
system (middle). The resulting model-based control system was used in subsequent CL control experiments (right).

excluded other thalamic neurons that exhibited more
heterogeneous behaviour (i.e. a minority of recor-
ded neurons were indirectly inhibited by the optical
input, interestingly). To capture the full heterogeneity
of the population, therefore, we fit 5th order PLDS
and GLDSmodels to each single-output dataset indi-
vidually (n= 48 neurons, 17 recordings in 9 mice).
A representative example SISO dataset is shown in
figure 2(c), where the firing rate estimates for the 5th

order PLDS (first row, orange) and 5th order GLDS
(second row, red) are superimposed onto the corres-
ponding PSTH (black) at white-noise onset and off-
set. Qualitatively, there is little gained in using a PLDS
model instead of a GLDS for this example, aside from
the non-negativity of the PLDS firing rate. Across the
population of units, there is no significant difference
between the performance of the Poisson vs. Gaussian
models (figure 2(d), n= 48 neurons, p= 0.234, Wil-
coxon signed-rank test). Specifically, the left plot of
figure 2(d) shows the proportion of the variance in

the raw 1 ms PSTH explained by 5th order PLDS and
GLDS fits (pVE).Note that a relatively lowproportion
of the variance in the raw PSTHs was explained, due
to levels of intrinsic noise in the observed responses at
fine timescales. For this reason, we assessed the qual-
ity of themodel using ametric that takes into account
the fact that some of the observed variability is not
explainable across trials [27], instead quantifying the
amount of explainable, or ‘signal’, variance the model
captures. The right panel of figure 2(d) presents the
proportion of the signal variance explained (pSVE),
showing that themodels captured approximately 60%
of the explainable variance and that there was not
a significant difference in the predictive capabilities
between the GLDS and the PLDSmodels in this data-
set. Therefore, with the exception of multi-output
modeling where the same PLDS versus GLDS ana-
lysis was conducted for comparison, GLDS models
are used for the remainder of this study in order to
leverage linear controls approaches.
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Figure 2. State-space models of SISO optogenetic responses. (a) SISO LDS model structure: Poisson (top) or Gaussian (bottom)
output functions being considered. (b) Population impulse response. This impulse response was fit using pooled data from 37
neurons that were excited by optical noise. An FIR model fit to population data (black) is plotted alongside the impulse response
from the 5th order GLDS model fit to the same data (red). (c) Example Data and Model Fits. Top, the PSTH (black) was
smoothed with a 1 ms standard deviation Gaussian window for visualization. The fit types include 5th-order PLDS (orange),
5th-order GLDS (red). Middle, the corresponding trial-by-trial spike raster. Bottom, repeated instantiation of uniform optical
noise. (d) Proportion variance in PSTH explained (pVE) and signal variance explained (pSVE) by model response to noise. All
models were trained on data from first half of each trial, while model performance metrics (pVE, pSVE) were calculated from the
second half of each trial. Error bars represent bootstrapped 95% confidence intervals about the population mean (n= 48
neurons, 17 recordings, 9 animals).

3.2. Parameter-adaptive Kalman filtering provides
robust online estimation
These GLDS models are used online as part of the
Kalman-filter-based estimator (figure 3(a), grey box)
which is used to provide state feedback to the con-
troller. While the models performed relatively well
in the case of uniform white-noise optical stimula-
tion as shown in figure 2, when challenged with step
changes in input that are often utilized in control
scenarios, non-zero-mean model mismatch is clearly
revealed (figure 3(b)). In this example the open-loop
model predicted firing rate (OL Prediction, red) ini-
tially under-estimates the experimentally-measured
firing rate (PSTH, black) during the first second of

stimulation and then consistently underestimates the
firing rate at steady state. Model-based control and
estimation schemes are particularly sensitive to such
plant-model mismatch, as is apparent here when
standard Kalman filtering used for online estima-
tion is applied to these datasets for step changes in
input. In this example in figure 3(b) there is still
an obvious bias in the average Kalman-filter estim-
ated firing rate (KF Estimate, purple) when compared
to the smoothed PSTH (PSTH, black). Moreover,
because of the rapid time-course of the fit neuronal
dynamics (figure 2(b)) and the spiking nature of the
measurements, the single-trial KF estimates of firing
rate which will be fed back to a controller are full
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of extreme transients each time a new spike is meas-
ured (figure 3(c), purple trace). Online estimation
of firing rate can be made more robust by assum-
ing there is an unmeasured, non-zero-mean disturb-
ance that varies stochastically (e.g. other exogenous
inputs), augmenting the state with themean(s) of this
disturbance (µ), and jointly re-estimating this along
with the state using Kalman filtering (figure 3(d),
see methods for details), which we refer to here as
the parameter-adaptive Kalman filter, but has else-
where been described as a proportional-integral Kal-
man filter [34, 35]. As can be seen in the example in
figure 3(e), this adaptive Kalman filter produces an
effectively unbiased estimate of the experimentally-
observed PSTH in SISO applications (figure 3(e),
purple vs. black), and it is able to do so with a single-
trial estimate of firing rate that is smoother than that
achieved by the standard Kalman filter (figure 3(f), cf.
figure 3(c)). In this example, the parameter-adaptive
Kalman filter approach accounts for apparent model
mismatch by estimating a process disturbance µ that
on average pushes the firing rate above the model
prediction for the first second of optical stimulation
and then pulls the estimated firing rate below that
prediction at steady state (figure 3(g)). The filtering
approach works well in this illustrative example and
at a population level, as it brings the estimation bias
to near-zero levels compared to the standard Kalman
filter (figure 3(h), p= 1.63× 10−9, Wilcoxon signed-
rank test, n= 48 neurons, 17 experiments, 9 animals).
At least in the context of estimating step responses, we
see there is little benefit in using a 5th order versus
1st-order GLDS model for this SISO application
(figure 3(h), black, p= 0.083 0,Wilcoxon signed-rank
test). Importantly, the parameter adaptation provides
enough robustness that even the population-average
GLDS model in figure 2(b) was able to estimate SISO
firing nearly as well as models fit to each neuron
individually (figure 3(h), gray, p= 0.014 2, Wilcoxon
signed-rank test). Since the control objective in this
study is to clamp firing rate at relatively long times-
cales, we therefore used a 1st-order Gaussian approx-
imation for the system. However, for fast timescale
trajectory tracking problems, a higher-order model
would almost certainly be warranted (see Discus-
sion), and higher-order models are important even
for long timescale control/estimation inmulti-output
scenarios (see section 3.6).

3.3. State-space control performs well in SISO
clamping applications
The control and estimation framework was tested
experimentally in the awake head-fixed mouse in
a SISO configuration, where spiking activity of a
single neuron was fed back to a controller with a
single channel of optical input. The models used
for pre-experiment controller design and for the
online estimation for state feedback were fit to
thalamic spiking responses to optical noise from

previous experiments in separate mice, as illustrated
in figure 1(d). As previously noted, 1st-order GLDS
models were sufficient and were therefore used for
this particular application; however, higher order
models would be merited or necessary in other scen-
arios. The robustness of the estimator (figure 3), the
use of feedback, and the slow timescale nature of the
control objective allowed GLDS models fit to pre-
viously collected noise response data to be used for
experimental control and estimation, rather than fit-
ting a model during an experiment, the timespan of
which is limited in the context of awake, head-fixed
recordings. The feedback controller was designed
using output-weighted LQR [37], where the state of
the systemwas augmented with the integrated output
in order to find not only proportional feedback gains
on the state, but integral feedback gains to minimize
steady state tracking errors (section 2.6.2). Addition-
ally, since this particular application is a non-zero set-
point regulation problem, the steady-state set-point

of the system
[
y∗⊤ x∗⊤ u∗⊤

]⊤
at the desired out-

put firing rate (r) was calculated as described in
section 2.6.1.

Figure 4 illustrates the performance of the con-
trol framework for a typical single thalamic neuron
and the summary performance across experiments.
Figure 4(a) is an illustration of the control imple-
mentation, highlighting the feedback controller and
the online estimator. In the case of the estimator,
Parameter-adaptive Kalman filtering is being used
to estimate not only the state of the system being
controlled but also the uncontrolled disturbance
(figure 4(a), estimator block). On the other hand,
the controller is operating on the error between the
estimated state of the system and the desired steady-
state set point as well as the integrated output error
(figure 4(a), controller block). In this example (figure
4(b)), the baseline ongoing activity of the recor-
ded neuron was approximately 5 spikes s−1, and
the controller was activated at time zero with a tar-
get firing rate of 20 spikes s−1. Upon activating the
controller, the neuron reached and remained at the
target firing rate (green), as reflected in the aver-
age firing rate (black). Importantly, the controller
operated using online estimates of state and corres-
ponding output firing rate provided by the estim-
ator (figure 4(b), purple). The firing rate of the
online estimator (purple) also quickly reached the
target (green) and remained there. As shown previ-
ously in figure 3, the online estimate was on aver-
age unbiased, as it matched the offline estimate of
the average firing (black, PSTH smoothed with 25 ms
s.d. Gaussian). The controller achieved the target
with well-below spontaneous levels of across-trial
variability, quantified using the Fano factor (FF) that
captures the spike count variance relative to the mean
spike count (figure 4(b), middle). In this particular
example, the controller’s use of feedback resulted in a
gradual increase in light intensity that was needed to
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Figure 3. Kalman filtering for online estimation in SISO applications. (a) Standard Kalman filter. Prediction error (e) is used to
correct the estimate of state at each time step. (b) Example open-loop (OL) prediction of neuronal response (red) to step input of
light (blue) using 5th order GLDS fit to noise-driven data, compared to PSTH smoothed with 25 ms Gaussian window (black)
and the trial-averaged response estimated using the standard implementation of the Kalman filter (5th-order GLDS) (purple). (c)
Example single-trial Kalman filter estimate (purple) along with corresponding spike raster (grey). (d) Parameter-adaptive Kalman
filter. In addition to estimating the state of the system, this approach jointly re-estimates a state disturbance (µ) at each time step.
(e) Same as (b) but trial-averaged estimate of firing rate using the parameter-adaptive Kalman filter. (f) Same as (c) except
single-trial estimate using parameter-adaptive Kalman filter. (g) Trial-averaged disturbance on the first state estimated using
parameter-adaptive Kalman filter. (h) Population average squared-bias in estimation calculated between the single-trial spiking
responses and the OL prediction of a 5th-order GLDS, the standard Kalman filter using the 5th-order GLDS, and the
parameter-adaptive Kalman filter (aKF) using a 1st- or 5th-order GLDS. Black and grey data points correspond to error
associated with using individually-fit models vs. a single population average fit model, respectively. Error bars represent
bootstrapped 95% confidence intervals about the mean (n= 48 neurons, 17 recordings, 9 animals).

maintain the target level of spiking over the control
epoch. Also note that this control signal varied sub-
stantially across individual trials (figure 4(b), bottom,
light blue), with significant individual trial variability
serving to drive the firing rate tracking and quench
the variability. While variable across experiments, in
general it was approximately 1.1 seconds before the
controller was able to push neuronal firing to within
2% of its steady state value (bootstrapped 95% con-
fidence intervals about the median, 0.47–1.34 s, n =
11 recordings). This settling time metric was calcu-
lated by fitting a second order transfer function to
closed-loop step data and using the MATLAB ‘step-
info’ function (Mathworks, Inc.).

Across experiments (n= 11 neurons, 11 exper-
iments), the control framework performed well as
quantified by the summary of performance metrics

in figure 4(c). For each of these metrics, the meas-
ure during closed-loop (CL) control is compared to
that from the spontaneous period (spont) before the
control was activated at time zero. Themean squared-
error (MSE) between an offline estimate of the single-
trial firing rate and the target (figure 4(c) left)
decreased significantly with activation of the control
law as expected (p= 0.001 95, Wilcoxon signed-rank
test), and the MSE during closed-loop control was
even below that of a Poisson spike generator driven
at the target rate (green bar), consistent with the sub-
Poisson variability as revealed by the Fano-factor in
figure 4(b). Because the MSE captures a combina-
tion of the variance and the bias, we separately com-
puted the bias in the control (figure 4(c) middle),
substantially reduced with the activation of the con-
trol (p= 0.000 977, Wilcoxon signed-rank test) and
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Figure 4. Experimental SISO control and estimation. (a) SISO control block flow diagram. Shown inside the controller and
estimator blocks are the notions of state being used in each operation. (b) Example experimental SISO control. (top) Fed-back
online estimate in purple (single trial in light purple, trial-averaged in bold), along with the corresponding trial-average offline
estimate (25 ms s.d. Gaussian-smoothed PSTH); (middle) across-trial spike count variability (Fano factor in 500 ms sliding
window) and corresponding example spike rasters from 10 randomly selected trials; (bottom) controller input. (c) Population
controller performance. In spontaneous vs. closed-loop (CL) control conditions, mean squared error (left) and squared bias
(middle) were calculated between the reference (20 spikes s−1) and single-trial feedback spiking data smoothed with a 25 ms s.d.
Gaussian window; average Fano factor was also calculated (right). For each trial, four seconds of spontaneous data were
compared to four seconds of CL control data. The first second was ignored in order to obtain a measure of steady-state
performance. Error bars represent bootstrapped 95% confidence intervals about the mean. Green bands represent 95%
confidence band for the metrics calculated from simulated Poisson firing at the target rate.

at the level expected for a Poisson spike generator
driven at the target rate (green band). To further
quantify the reduction in across-trial variability dur-
ing the control, we computed the average Fano-factor
in a 500 ms sliding window, exhibiting substantial
reduction from supra-Poisson variability (FF> 1) in
the spontaneous activity to sub-Poisson variability
(FF< 1) during the control (figure 4(c) right).

3.4. Multi-electrode recordings reveal effects of
SISO control on simultaneously recorded neurons
Up to this point, the state-space control framework
has been shown effective for tracking step commands
in single-neuron scenarios. However, neural record-
ing methodologies (electrophysiology and imaging)
continue to scale in size (e.g. larger numbers of chan-
nels for electrophysiology, or pixels for imaging) and

one of the main benefits of using state-space mod-
els for control and estimation is the generalizabil-
ity to such multi-output problems. While the pre-
ceding experimental demonstration was presented in
the context of a single channel of light input and
a single channel of neuronal output, in a subset of
experiments, we simultaneously recorded multiple
nearby neurons in the thalamus of the awake, head-
fixed mouse. This provides a window into the effect
of the stimulation on the local population while a
single neuron is used as an ‘antenna’ around which
the controller is operating, which we will refer to as
the feedback (FB) neuron (figure 5(a)). For the pur-
poses of this analysis, we inspected simultaneously-
recorded neurons that were excited by 5 ms square
pulses of light with sub-10 ms latency. Figure 5(b)
provides an example in which one neuron is being
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used for feedback (purple, top), while offline spike
sorting reveals the activity of six other simultaneously
recorded neurons, which we will refer to as non-
FB neurons (black, trial-averaged firing rates; green
shows control target). While nearby on this 25 µm
spaced electrode array (figure 5(b), right), these neur-
ons nevertheless responded heterogeneously to the
optical stimulation. In this particular example, the
FB neuron was substantially more sensitive to light
compared to the non-FB neurons, as evidenced by
their modest response following the controller activ-
ation at time zero. While all increase their firing rates
in response to the controller input, none are driven
to or above the target firing rate of 20 spikes sec−1

in this example. This was not always the case, as
in other experiments the non-FB neurons could be
either more or less sensitive to the light input as com-
pared to the FB neuron. Across experiments (n= 8
feedback neurons, 23 non-feedback neurons, 8 exper-
iments), we calculated the average per-trial firing rate
during the pre-control spontaneous (spont) versus
control periods for the FB neuron and the non-FB
neurons recorded simultaneously. As expected, for
the FB neurons, the controller reliably pushed the fir-
ing rate to the 20 spikes s−1 target. In contrast, while
the average firing rate of non-FBneuronswas signific-
antly elevated from spontaneous levels and toward the
20 spikes s−1 target (p= 0.007 81, Wilcoxon signed-
rank test), it did so with high variability as evid-
enced by very wide confidence intervals about the
across-experiment average (12.7 to 25.1 spikes s−1,
figure 5(c), left, grey) andmademore plain by the fact
that FF did not change from its spontaneous levels
in the non-FB neuron case (figure 5(c), right, grey,
p= 0.844, Wilcoxon signed rank test).

Beyond the firing rate of individual neurons
within the population, it is important to determ-
ine what effect the optical stimulation has on the
spike timing and synchronization across the popula-
tion. Although we have previously shown that optical
stimulation over some ranges results in a somewhat
reduced synchronization relative to comparable elec-
trical stimulation [21], it remains an important issue
to quantify the effect in the context of the control
scheme used here. We find that the use of continu-
ously graded closed-loop stimulation did not signi-
ficantly synchronize the recorded thalamic neurons
when compared to commonly used pulsatile stim-
ulation (figures 5(d)–(e)). Spike cross-correlograms
were calculated from relative spike times for each
of 33 simultaneously-recorded pairs of neurons (see
section 2.7.3). The population correlogram shows no
peak at or around zero-lag for the case of closed-
loop control (figure 5(d), black). In contrast, 5 ms
square pulses of light delivered in open-loop at 10 Hz
to the same neurons caused clearly aligned spiking
(figure 5(d), red). There was very little synchroniz-
ation of recorded neurons during closed-loop con-
trol epochs compared to the results using pulsatile

stimulation (figure 5(e), p= 5.39× 10−7, Wilcoxon
signed-rank test), where synchrony was quantified as
the number of temporally-aligned spikes in ±7.5 ms
window, relative to the total number of spikes in a
±50 ms window. Note that these open-loop pulses
were in general higher amplitude than the continu-
ously modulated closed-loop stimulation, so it is not
necessarily the case that pulsatile inputs would have
such synchronizing effects at all stimulation intens-
ities. Also, it is possible that low-amplitude pulsatile
stimulation may provide a smaller amount of heat-
ing as compared to sustained light inputs used by
this control strategy. That said, the estimated light
levels used by the controller tended to be on the order
of (or less than) 10 mW mm−2 which corresponds
to less than 1 mW of optical power from the optic
fibers used in this study. A previous study that meas-
ured the neuronal effects of optical stimulation in the
absence of opsin expression reported no significant
change in firing rate for 1 mW light intensity shone
through a 200 µm fiber [43]. While it is therefore
unlikely the levels of stimulation used here led to heat-
induced changes in neuronal activity, this is certainly
an important consideration moving forward.

3.5. GLDSmodels generalize to multi-output
datasets
In the previous section, we considered the effects
of closed-loop optogenetic control on nearby neur-
ons when the control was applied in a single FB
neuron (i.e. SISO) scenario. More generally, the goal
of control may be bringing the firing rate of a neur-
onal population toward a common target, rather than
a single neuron, in order to provide a more con-
trolled and uniform input to downstream neurons.
An open question is whether multi-output control
would serve this goal better than the above single-
neuron ‘antenna’ approach. One of the strengths of
the state-space control and estimation framework is
that it is amenable to such multi-output applications.

To investigate themulti-output capabilities of this
approach,we first demonstrate that theseGLDSmod-
els can be used to capture the SIMO systems in cases
where we recorded multiple neurons simultaneously.
We found that the response of multiple neurons to
optical noise could be represented by 5th order GLDS
models due to the similarity in dynamics and coup-
ling across the channels. Note that in contrast to the
single-output scenario considered previously, sim-
ultaneously recorded neurons are taken to be out-
put channels driven by a common LDS. In other
words, a common state vector is mapped to indi-
vidual outputs (figure 3.5(a)). The same subspace
algorithm was used to identify these multi-output
models as before for the SISO case. Figure 3.5(b) and
(c) provide example results of the GLDS state-space
modeling for an example set of four thalamic neur-
ons recorded simultaneously. Figure 3.5(b) shows the
impulse response of the GLDSmodel of the dynamics
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Figure 5. Effects of SISO control on local population. (a) SISO control block flow diagram with multi-output recordings. (b)
Example experimental SISO control with simultaneous multi-output recordings. (Top) Fed-back online firing rate estimate in
purple (single trial in light purple, trial-averaged in bold) relative to reference (green); (middle) trial-averaged firing rate estimates
for simultaneously recorded non-FB neurons (25 ms s.d. Gaussian-smoothed PSTH); (bottom) controller input. To the right are
the waveforms of each neuron in this example (average waveform in black,±1 s.d. in grey). (c) Spontaneous vs. CL population
average firing rate (left) and Fano factor (right) for the feedback neuron (black) as compared to the other non-feedback-neurons
recorded simultaneously (grey). Error bars represent bootstrapped 95% confidence intervals about the mean. (d) Population spike
cross-correlogram of simultaneously recorded pairs during optical stimulation. Bold black represents population mean in each
1 ms bin for CL, while fills represent 2 standard errors about the mean. For comparison, red represents population average spike
cross-correlogram for response of the same cells to 5 ms square pulses of light presented in open-loop. (e) Population synchrony
for spontaneous vs. closed-loop vs. pulsatile conditions. Synchrony was taken as the number of spikes occurring in the±7.5 ms
bins, relative to the total number of spikes in the±50 ms window. Error bars represent 95% confidence intervals about the mean.

across these recorded neurons (red), superimposed
on the corresponding FIR estimates (black), show-
ing good correspondence as previously exhibited for
the single neuron case in figure 2(b). Figure 3.5(c)
shows the model predictions of the responses to uni-
form white noise optical stimulation (red) as com-
pared to average experimentally recorded trial aver-
aged firing (black) for this same set of neurons. The
neurons clearly responded heterogeneously to light in
terms of overall gain, and the GLDS model captures
this and the temporal characteristics of the response
to optical noise well. On average (n= 11 experiments,
42 neurons), 5th order GLDSmodels predict popula-
tion PSTHs approximately as well as in the previously
shownSISO case (pSVE60%, figure 3.5(d)). As before

(figure 2), multi-output PLDS models were also fit to
the same data and we found no significant difference
between the performance of the Poisson vs. Gaussian
LDS models in explaining the PSTHs under these
conditions (p= 0.923,Wilcoxon signed-rank test). As
is clear in the example responses in figure 3.5(c),
across recordings we found there was often large
(sometimes tenfold) heterogeneity in overall sensit-
ivity to light as measured by the static input–output
gain, even though the dynamics could be qualitatively
similar. To explicitly characterize this heterogeneity,
figure 3.5(e) represents the static gain for each recor-
ded neuron, calculated from the steady state input-
output gain of the GLDS fits (circle represents mean,
bars represent range). It should be noted that among
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Figure 3.5. State-space models of SIMO optogenetic responses. (a) Multi-output GLDS model diagram. A common state is
mapped to multiple outputs. (b) Example impulse responses from a single multi-output GLDS model (red) vs. multiple
single-output FIR models (black). (c) (top) Example multi-output GLDS model response to optical noise (red) vs. PSTH (black).
(bottom) Optical noise stimulus used to fit the model. (d) Population proportion variance in PSTH explained (pVE) and signal
variance explained (pSVE) by model response to noise. All models were trained on data from first half of each trial, while model
performance metrics (pVE, pSVE) were calculated from the second half of each trial. Error bars represent bootstrapped 95%
confidence intervals about the population mean. (e) Range of static input-output gain across and within recordings.

the inclusion criteria for this study was that neurons
must be significantlymodulated by light (section 2.3);
however, this does not mean that all neurons were
directly stimulated and so could be indirectly excited
or even inhibited (i.e. have negative gains) by optical
stimulation of ChR2 expressed in other cells in the
network.

3.6. Online estimationmethods generalize to
multi-output applications
As described previously, the state-space models were
used for both offline controller design as well as for
the online estimation of feedback provided to the
controller. Figure 6 details the performance of the
parameter-adaptive Kalman filter estimator for the
single-input, multi-output (SIMO) case. While a 1st-
order GLDS Kalman filter performed sufficiently well

as an estimator for the SISO application (figure 3),
a 1st-order approximation leads to substantial bias
in the estimates in multi-output scenarios, as shown
in the example 3-neuron recording of figure 6(a)
(trial averaged estimate in dark purple vs. PSTH
in black). In this example, the adaptive Kalman fil-
ter overestimates the firing activity of neuron 1,
while underestimating the firing of neurons 2 and
3. Moreover, the filter fails to capture the gradual
decline in firing of neuron 3 over the course of the
step response. This is to be expected, as there is
only one state disturbance being estimated in the 1st-
order case formultiple outputs thatmay be independ-
ently perturbed. For the same multi-output example,
a higher order adaptive Kalman filter (5th-order,
figure 6(b)) achieves substantially lower estimation
bias, albeit not unbiased like the SISO scenario
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(figure 3). In this example, the average activity of
neurons 1 and 3 is accurately estimated; however,
the firing rate of neuron 2 is under-estimated ini-
tially. Across the population of multi-output record-
ings (n= 11 experiments, 42 neurons), the 5th-
order adaptive Kalman filter provides lower estima-
tion bias than a standard Kalman filter (figure 6(c),
p= 2.37× 10−8,Wilcoxon signed-rank test) aswell as
a 1st-order adaptive Kalman filter (p= 2.20× 10−8,
Wilcoxon signed-rank test). It is unsurprising that the
higher order adaptive filter improved performance in
the multi-output case because there are more state
disturbances being estimated. However, as is evid-
ent in figure 6(b), it is important to note that while
higher order models perform better, this form of
parameter-adaptive Kalman filtering does not inde-
pendently minimize the estimation error for each
output neuron in general because the estimated pro-
cess disturbances act on a set of common state vari-
ables.

3.7. Simulated SIMO control more robust to
population heterogeneity than a SISO ‘antenna’
approach
While we experimentally tested the control frame-
work in the context of single-neuron feedback, the
optogenetic approaches we and others use results in
opsin expression in a region of tissue rather than just
the feedback neuron. Furthermore, the light source
used to stimulate activity impacts a volume of tissue.
So, optical stimulation naturally affects a local pop-
ulation of neurons, each of which is potentially dif-
ferent in terms of intrinsic excitability, levels of opsin
expression, etc, resulting in a net change in sensitivity
to light. Because downstream neurons receive inputs
from multiple cells, it is important to investigate the
applicability of this technique for feedback control
of a local population, rather than a single neuron.
To demonstrate the generalizability of this approach
to multi-output control problems and to explore the
robustness of SIMO control to population heterogen-
eity in light sensitivity (figures 5(b) and 3.5), we simu-
lated a 2-output systemwhose second output (neuron
2) ranged from much less sensitive than neuron 1 to
much more sensitive (figure 7(a)). To simulate spik-
ing, an example PLDS model previously fit to SISO
experimental data was chosen tomost accurately rep-
resent the complexities in the data (e.g. spiking). The
output matrix of this model was augmented with
a second row whose elements were gain-modulated
versions of the first row (figure 7(a), bottom inset).
This log-linear gain term was swept from 0.1 to 3
times that of neuron 1. After fitting GLDS models to
simulated SIMO datasets (below), this resulted in lin-
ear gain of neuron 2 ranging from 0.027 to 13.3 times
that of neuron 1. In these simulations, the dynam-
ics of the PLDS model neurons were held fixed. This
resulted in a set of simulated datasets representing a
range of similarity between the two output neurons.

Using previously described methods, a multi-
output GLDS model was fit to simulated spiking
responses to optical white noise in the case where
neurons 1 and 2 had the same log-linear gain. A
single-output model was fit to the responses of
neuron 1. An estimator and controller were designed
using these SIMO and SISO models and they were
applied to control of the 2-output PLDS across a
range of output gain disparities. In the SISO case, only
the activity of neuron 1 was used for feedback con-
trol, while in the SIMO, spiking activity from both
neurons was fed back to the estimator and controller.
Examples where the log-linear gain of neuron 2 is 1.5-
times that of neuron 1 are provided in figures 7(b)
and (c), showing the SISO and SIMO control res-
ults, respectively. Qualitatively, while SISO control of
neuron 1 successfully clamps activity of that chan-
nel at the target 20 spikes s−1, neuron 2 is well above
the target (figure 7(b)). Conversely, the multi-output
control case strikes a balance between the two, allow-
ing neuron 1 to fall below the target and reigning in
the above-target activity of neuron 2 (figure 7(c)). As
summarized in figure 7(d), population tracking per-
formance was quantified as the total MSE of neuron
1 and neuron 2 single-trial firing rates vs. a 20 spikes
s−1 reference firing rate, both for single-output (red)
and multi-output (black) control strategies. High-
lighted with the open symbols are the performances
of the examples given in figures 7(b) and (c), where
the value of the log-linear gain of neuron 2 was 1.5
times that of neuron 1. As expected, a multi-output
control strategy is more robust to population het-
erogeneity, as the SISO control performance rapidly
degrades when the ignored neuron 2 is increasingly
sensitive. Note that this effect is not symmetric, as
discrepancies in sensitivity are substantially less prob-
lematic when neurons in the population are less sens-
itive to the light input as compared to the feedback
neuron (relative gain< 1). Taken together with previ-
ous multi-output modeling and estimation on exper-
imental data, these simulations demonstrate that the
techniques used first for SISO applications are read-
ily applicable tomulti-output problems and that such
approaches could grant better control of population
neural activity of interest.

4. Discussion

With the continued development of tools for precisely
and selectively manipulating neuronal ensembles
using multiple inputs [13, 44] and correspond-
ing technologies for measuring large-scale neuronal
activity [1], a framework for the integration of these
technologies enablesmore intelligent interactionwith
neuronal circuits within and across brain regions
(for review, see [14]). The state-space model struc-
ture is a natural choice for describing systems that
involve a number of inputs and outputs (referred
to as multi-input, multi-output or MIMO) [45].
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Figure 6. Kalman filtering for online estimation in SIMO applications. (a) Online estimation for example SIMO system using
parameter-adaptive Kalman filter with a 1st-order GLDS. Shown for each of three simultaneously recorded single neurons: PSTH
(black), trial-averaged estimate (bold purple), and example single trial (light purple). (b) Online estimation of firing rate using
parameter-adaptive 5th-order GLDS (same data as in (a)). (c) Population summary squared-bias: Open-loop (OL) prediction of
5th order GLDS, standard Kalman filter (KF), and parameter-adaptive KF (aKF) for 1st- and 5th-order models. Fills/error bars
represent 95% confidence intervals about the mean.

State-space models for system dynamics in combin-
ation with the framework of optimal control and
estimation allows design and implementation of con-
trol loops to scale without cumbersome changes in
methodology, as is evident in this study where the
samemodel structure has been applied successfully in
online estimation and control of activity in single- as
well as multi-neuron systems.

In more modern control approaches, a model
of the underlying dynamics to be controlled is used
for both design and implementation of the control
law. Across different pathways and circuits, numer-
ous model types have been used to predict neural
activity at fast time scales [31, 46, 47], some of
which have been applied to ensembles of neurons
[28, 48–51]. For the purpose of control applications,
we modeled optically-driven responses of neurons
in the sensory thalamus using a state-space dynam-
ical systems representation, where any higher order
dynamics are captured in sets of coupled, first-order
difference equations. In contrast to more widely used
phenomenological models for neuronal responses to
stimuli such as the linear receptive field [52, 53],

the linear-non-linear-Poisson (LNP) model [42, 54],
and the generalized linear model (GLM) [46, 48],
state-space models describe what could be large-scale
recordings as arising from some potentially small
number of latent ‘states’ that evolve dynamically in
time as a function of themselves and covariates such as
sensory or optical stimuli. We found that linear state-
space (i.e. GLDS) models could be used in the con-
text of the control objective of maintaining a steady
firing rate in the face of ongoing activity changes dur-
ing wakefulness in these early sensory neurons. This
was not a given, as many applications of state-space
models to neuronal spiking data have used non-linear
dynamical systems, or at least linear dynamical sys-
tems with Poisson observations [15, 18, 28, 30, 49,
55–58]. While the GLDS models used here clearly
do not respect the statistics of the measured spik-
ing data and while they can grossly mis-predict neur-
onal responses to optical stimulation (e.g. figure 3(a)),
they do capture the basic dynamics and the robust-
ness of the parameter-adaptive Kalman filter in com-
bination with feedback control allowed the use of this
relatively simple modeling framework and unlocks
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Figure 7. Simulated SIMO control and estimation. (a) Simulated control of a SIMO PLDS model system. A 2-output PLDS was
simulated, whose second channel of output was a gain-modulated version of the first channel. (b) Example SISO Control. Only
data from neuron 1 (top) was fed back during the simulated control. PLDS neuron 2 was 1.5 times more sensitive than neuron 1
before exponentiation in this example. Actual firing rate of each neuron (PSTH smoothed with 25 ms s.d. Gaussian) is shown in
black as compared to reference (green). (c) Example of multi-output control. Both neurons’ data are fed back to controller for
online estimation and control. Signals are the same as in (b). (d) Simulated mean-squared tracking error for SISO control of
neuron 1 (red) vs. SIMO control (black) as a function of the relative log-linear gain of neuron 2. Circles denote mean-squared
error for examples in (b), (c).

a wealth of other linear design and analysis meth-
ods developed over years of study. Similarly, a recent
study that used state-space feedback control in the
context of hardware-simulated manipulation of elec-
trocorticography (ECoG) made a practical conces-
sion to use a linear model that was more amenable
to commonly-used feedback control techniques [59].
In contrast, we previously used a linear-non-linear-
Poisson (LNP) spiking model in to design a classical
proportional-integral (PI) controller [7]. While that
simple control strategy proved quite effective even
for tracking patterns of rate modulation, the con-
troller was designed numerically around a simulated

spiking system, owing to the multiple nonlinearit-
ies that precluded the use of such design tools as
LQR used in the present study. Simply put, there is
a natural trade-off between the complexity of mod-
els and complexity of the control design and imple-
mentation itself, especially as the dimensionality of
problems scale. That said, a non-linear model will
likely be needed in some control applications and
it is possible the use of a PLDS model would have
improved control performance even in this applica-
tion but at the expense of complexity. In cases where
a Poisson model is necessary and/or beneficial, there
are previously developed methods for estimating the
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underlying state of a PLDS (‘point process filter’, [56,
60]). One could leverage these non-linear filtering
techniques and design/implement feedback control
in the log-linear state space as described here for lin-
ear systems.

Aside from the observed robustness to the lin-
ear approximation of non-linear neuronal activity,
we also found in the context of SISO control prob-
lems that the parameter-adaptive Kalman filtering
and feedback control granted enough robustness to
model-mismatch that the GLDS did not have to be
fit during the tight time constraints of awake, head-
fixed recording sessions. Instead, data from previ-
ous experiments were used for the controller design
and online estimation (figure 1(d)). Certainly, a large
part of this success comes down to the fact that the
control objective was relatively long-timescale firing
rate regulation. In the context of trajectory track-
ing, we previously showed that, while closed-loop
control grants some robustness to model mismatch,
even things as simple as DC gain mis-estimation can
lead to off-target activity when the target trajectory
is time-varying [7]. Indeed, in the present study we
have observed a wide array of neuron sensitivity to
light. It is also true that while the adaptive estim-
ator was largely unbiased under SISO conditions, the
parameter adaptation carried out here did not always
eliminate bias in multi-output scenarios. Therefore,
there are certainly scenarios like trajectory tracking
andmulti-output control in which the control object-
ive would warrant better model fits, or at least adapt-
ively re-estimating other parameters such as the input
matrix (B) or output matrix (C) rather than attempt-
ing to capture all model mismatch with a linear dis-
turbance as was implemented here. In general, this
would call for non-linear variants of the Kalman fil-
ter, such as the extended Kalman filter [36, 60].

In addition to the fact that the control method
proved quite robust to model-mismatch in the sense
of the statistics of measured data and the aforemen-
tioned long timescale biases in model predictions, we
also found that we were able to effectively carry out
the SISO control and estimation problems using a
first order approximation of systems that appeared
to be fourth or fifth order (figure 2(b)). Since the
control objective was to track a firing rate step com-
mand over relatively long timescales, this should be
expected. After all, the dynamics of these systems
tended to have died out after tens of milliseconds
(figure 2(b)). In applications where the objective is to
entrain precisely-timed sequences of spiking activity
rather than an overall firing rate (e.g. [18, 55, 61, 62]),
a higher-order model would be merited and more
emphasis would need to be placed on stimulus design.

The fact that the present study only tackles the
problem of tracking a constant firing rate target begs
the question of how applicable the approach is to
the problem of tracking desired trajectories of neur-
onal activity. The controller was designed by solving

an infinite horizon optimization problem (specific-
ally, LQR) and was not explicitly designed for track-
ing target patterns of activity. That said, the methods
laid out in here would be directly applicable to track-
ing problems where the desired pattern of activity is
slow compared to the dynamics of the system being
controlled. As mentioned above, the average light-to-
spiking impulse response for thalamic units tended
to die out over tens of milliseconds, indicating that
the methods used here for model-based control may
not be completely applicable to control of patterns at
that time scale or faster. In such cases, a finite horizon
optimization of feedback controller gains and a nom-
inal control input using a technique like iterative LQR
[63] may prove beneficial or necessary.

To this point, all references to the robustness
of this control framework have pertained to activ-
ity of the putative single neuron which was used
to adjust stimulation in real-time. Across record-
ings, the feedback neuron’s activity was maintained
at the target firing rate with low error on average
and, importantly, with low trial-to-trial variability.
However, we found that the local population of neur-
ons also excited by the optical stimulation did not
exhibit this same lowered variability. It is worth not-
ing that it is likely the case that pulsatile stimulation
rather than the continuously-graded stimulation we
used here would have had a less variable effect on
the population. However, we showed that presenting
5 ms pulses of light synchronizes the population and
would thus likely strongly impact downstream tar-
gets in a way that is unsuitable for many applications.
Therefore, to reap the benefits of closed-loop con-
trol in neural circuits, feedback of population activ-
ity rather than a putative single neuron will likely
be of great importance moving forward. Import-
antly, most commercially available electrophysiolo-
gical data acquisition systems do not currently per-
form spike-sorting across densemultielectrode arrays
like those used here; instead spike-sorting is carried
out in a channel-by-channel fashion or is restric-
ted to lower channel count tetrode configurations
in general. Given the difficulty of online identifica-
tion of individual neurons from raw electrophysiolo-
gical recordings (i.e. spike-sorting) for dense mul-
tielectrode arrays, the thresholded multi-unit activity
often utilized in brain-machine interface applications
may prove an effective alternative measure of popu-
lation activity [64]. Alternatively, it is conceivable in
the case of chronic implants to sort and track single
units across experiments [65, 66].

Aside from providing multi-output feedback to
the controller, the addition of multiple light sources
(e.g. [44]) would afford some degree of population
control spatially. The current preparation is highly
underactuated in that there is a single light source
being used to manipulate local activity, and there will
in practice always be heterogeneities in responsive-
ness to light in space, whether it be due to varying
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distance from a common light source or differences
in expression of opsins, etc. In addition to multiple
spatially-distributed light sources, having the ability
to simultaneously excite and inhibit neuronal activ-
ity using light of different wavelengths will also be
key for robustness of optogenetic control moving
forward. Note that in the present study, a single
excitatory opsin (ChR2) was expressed in excitatory
cells, meaning that the control is limited to push-
ing activity of those neurons toward higher firing
rates. This effectively limits the control problem to
one that maintains firing at an above-average desired
level: here, 20 spikes s−1 which naturally occurs in
this pathway. Conversely, if inhibitory opsins were
expressed (or excitatory opsins were expressed in
inhibitory interneurons), the control objective would
be limited to maintaining or pulling down spontan-
eous levels of activity. Therefore, the ability to effect-
ively push as well as pull back on neuronal activ-
ity would greatly expand the utility of this approach.
Importantly, while not tested here, the state-space
control and estimation methods developed in the
present study should generalize to the control ofmore
complex neural circuits in the future. However, it is
likely the differing kinetics of excitatory and inhibit-
ory opsins would necessitate higher order models.

Besides the utility in treatment of neurological
disorders and diseases [19, 20, 67, 68], or in aug-
menting normal brain function, the precise, closed-
loop control of neural circuits has the potential to sig-
nificantly enhance our understanding of underlying
mechanisms of basic brain function. After all, feed-
back control enabled the seminal work of Hodgkin
and Huxley in uncovering the nature of the ionic cur-
rents that underlie the generation of a neuron’s action
potential, for which they won the Nobel Prize in 1963
[69]. The key to this experimental work was the use of
a feedback controller to ‘clamp’ the trans-membrane
voltage by injecting current to counter-act naturally
occurring changes in ionic currents. This functional
decoupling of constituent ionic and capacitive cur-
rents led to a quantitative description of the non-
linear dynamics of the action potential. Single-cell
voltage clamp and dynamic clamp experiments [70]
continue to be a powerful tool for scientific discov-
ery, but continuously-graded feedback control of this
sort has not been translated to the circuit-level, where
the dynamics are complex and can adaptively change
from moment to moment. Fundamentally different
from lesioning or reversibly silencing brain regions,
closed-loop optogenetic control has the opportunity
to aid investigation of the mechanisms governing cir-
cuit level dynamics in a similar way voltage clamp did
for the single neuron.

5. Conclusions

In this study, a state-space control and estimation
framework has been developed and demonstrated to

work well in the context of wakefulness, where there
is spontaneous fluctuation in neuronal activity. Com-
pared to Bolus et al [7], this updated approach is
more naturally suited to theMIMO control problems
that are important in studying complicated neural
circuits. Notably, we were able to use a simple, lin-
ear approximation to this non-linear system at least
for long-timescale control objectives, such as main-
taining an overall firing rate. The relative simplicity
of these approaches achieved at the expense of mod-
eling fidelity represents one of the chief strengths of
the methodology, as linear control is well understood
and is widely used. Moreover, while tested in the con-
text of controlling spiking activity which is often stat-
istically modeled as a point-process, the methods laid
out here are immediately applicable to the control of
continuous-valued neuronal signals of interest such
as local field potential and voltage/calcium imaging.
This demonstration of state-space models being used
for single- and multi-output applications of opto-
genetic control opens the door to other established
control strategies that use this modeling framework,
such as model predictive control [45]. As a whole,
this work lays the foundation for future advances in
manipulation and study of neuronal circuits using the
integration of neuronal recordings and optogenetic
stimulation.
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