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1.  Introduction

The ability to control neuronal activity has deep clinical and 
scientific significance, ranging from treating movement dis­
orders and epilepsy to understanding fundamental operating 
principles of single cells and intricately interconnected net­
works. Indeed, it was the use of a feedback controller—Cole’s 

voltage clamp—that enabled the pioneering studies of 
Hodgkin and Huxley and gave rise to our understanding of 
the ionic currents underlying the action potential [1]. Today, 
the neuroscience community is faced more acutely than 
ever with the task of dissecting the functions of neurons in 
the context of connected networks. To disentangle the roles 
of different cell types or structures under such conditions, 
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Abstract
Objective. Controlling neural activity enables the possibility of manipulating sensory 
perception, cognitive processes, and body movement, in addition to providing a powerful 
framework for functionally disentangling the neural circuits that underlie these complex 
phenomena. Over the last decade, optogenetic stimulation has become an increasingly 
important and powerful tool for understanding neural circuit function, owing to the ability to 
target specific cell types and bidirectionally modulate neural activity. To date, most stimulation 
has been provided in open-loop or in an on/off closed-loop fashion, where previously-
determined stimulation is triggered by an event. Here, we describe and demonstrate a design 
approach for precise optogenetic control of neuronal firing rate modulation using feedback 
to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as 
an experimental testbed for realizing desired time-varying patterns of firing rate modulation, 
we utilized a moving average exponential filter to estimate firing rate online from single-unit 
spiking measured extracellularly. This estimate of instantaneous rate served as feedback for 
a proportional integral (PI) controller, which was designed during the experiment based on 
a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The 
LNP model fit during the experiment enabled robust closed-loop control, resulting in good 
tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. 
Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. 
Because neuroscientists are faced with the challenge of dissecting the functions of circuit 
components, the ability to maintain control of a region of interest in spite of changes in 
ongoing neural activity will be important for disambiguating function within networks. 
Closed-loop stimulation strategies are ideal for control that is robust to such changes, and the 
employment of continuous feedback to adjust stimulation in real-time can improve the quality 
of data collected using optogenetic manipulation.
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systems neuroscience requires a set of tools for controlling 
neural activity at a meso-scale, between the extremes of stim­
ulating single neurons and non-selectively manipulating large, 
diverse populations. Importantly, these control methodologies 
should also be robust to changes in ongoing activity in the 
brain which could otherwise be sources of unexplained exper­
imental variability.

Over the last decade, optogenetic stimulation has emerged 
as a tool for understanding neural circuit function. Unlike elec­
trical stimulation, optogenetic manipulations have the ability 
to target the expression of opsins genetically (e.g. [2, 3]) and/or 
anatomically (e.g. single-cell [4] or retrogradely-labeled [5]). 
Given the flexibility of this technique and a maturing genetic 
toolbox, there is growing interest in the intersection between 
optogenetics and engineering control theory as a method for 
dissecting circuit function [6–8]. Notably, optogenetics lends 
itself particularly well to closed-loop control, pairing electro­
physiological recordings with optical stimulation. In contrast 
with simultaneous electrical stimulation and recording which 
is plagued by stimulation artifacts, there is comparatively less 
concern for such artifacts corrupting measurements when 
using optical stimulation.

Control theory has already been brought to bear on the 
problem of manipulating neural activity for the purposes 
of halting seizures [9–13], reducing oscillatory activity in 
models of Parkinson’s [14], and artificially replicating LFP 
patterns naturally evoked in response to touch [15]. To date, 
most so-called neurocontrol—whether by means of optical or 
electrical stimulation—has been conducted in an open-loop 
or on/off closed-loop fashion. In the latter case, stimulation 
is triggered by activity of interest (e.g. [11, 12, 16–18]). In 
such applications, the stimulation that is delivered has been 
previously determined, through experimentation or using pre­
viously identified mathematical models. However, neuronal 
responses elicited by stimulation can vary across individuals, 
cells, and even over time. Rather than using feedback merely 
to trigger pre-determined stimulation, another strategy is to 
make continuous use of feedback to update stimulation in real-
time. Recently, we demonstrated the first such use of closed-
loop optogenetic control in vivo [19], where light intensity was 
adjusted to maintain a constant firing rate over time. While the 
first of its kind, the study did not offer a principled design 
methodology, nor did it extend the method beyond static ref­
erence tracking. In the present study we have developed and 
demonstrated a strategy for designing a proportional-integral 
(PI) controller for eliciting desired patterns of temporal rate 
modulation.

Here, we demonstrate that a simple control scheme can be 
effective for eliciting desired patterns of firing rate in vivo, 
and that the use of feedback confers a reduction in trial-to-
trial variability as compared to open-loop stimulation. We 
have developed an approach for tuning the closed-loop control 
system for eliciting sinusoidally modulated patterns of firing 
rate, which includes an observer for estimating firing rate 
online from measured spikes as well as the controller itself. 
Finally, we demonstrate that this procedure can generalize to 
more complex, non-sinusoidal signals of interest.

2.  Methods

We have developed a principled design strategy for closed-
loop control of dynamic trajectories in neural firing patterns 
through the use of a proportional-integral (PI) controller and 
an exponential filter serving as an observer to estimate the 
latent firing rate from measured spikes. We utilized an in vivo 
rodent model where we recorded from and optically stimu­
lated neurons in the ventral posteromedial (VPm) region of 
the thalamus that have been transfected with a depolarizing 
light-sensitive ion channel. The experimental preparation is 
outlined in figure  1(A), illustrating the single-unit thalamic 
recording, optical drive of opsin-expressing thalamic neu­
rons, and the relationship of the thalamus to the whisker-
driven afferent input from the periphery and the ascending 
and descending connections with the primary somatosensory 
cortex. The block diagram in figure 1(B) illustrates the con­
trol framework, where the ‘neural system’ (in this case, a 
single unit in the thalamus) emits measured spiking patterns 
(n), which are in turn utilized to estimate firing rate (λ̂). The 
difference in estimated firing rate and reference (or, desired) 
firing rate (λr) is defined as the online estimate of tracking 
error ( ê ). A conventional PI controller operates on this error 
signal, yielding a light input (u) which drives optogenetic 
excitation of the thalamic neurons.

2.1.  Experimental preparation

All procedures were approved by the Institutional Animal Care 
and Use Committee at the Georgia Institute of Technology and 
were in agreement with guidelines established by the NIH. 
Experiments were carried out using female albino (Sprague-
Dawley) rats. Expression of channelrhodopsin was targeted 
to excitatory neurons (rAAV5/CamKIIa-hChR2(H134R)-
mcherry-WPRE-pA; UNC Vector Core, Chapel Hill, NC) 
in the ventro-posteromedial nucleus (VPm) of the thalamus 
by way of stereotactic injections (3  ×  3  ×  5.2 mm rostro-
caudal  ×  medio-lateral  ×  depth) [20]. A 1 μl volume of virus 
was injected at a rate of 0.1 μl min−1. The animals were given 
buprenorphine for pain management (0.03 mg kg−1). Animals 
were then monitored daily following injection surgery. Wound 
clips were removed at 10–13 d post-surgery. Animals were 
allowed to recover and opsins allowed to express  >3 weeks. 
While VPm of the thalamus was the anatomical target, any 
optogenetically-driven neuron in thalamus that exhibited 
well-isolated spiking activity was considered a candidate for 
this study.

On the day of the experiment, rats were anesthetized using 
a cocktail of fentanyl (5 μg kg−1), midazolam (2 mg kg−1), 
and dexmedetomidine (150 μg kg−1) delivered intravenously 
through the tail vein [20, 21]. Animal body temperature 
was maintained at approximately 37 °C using a feedback-
controlled heating pad. A 3 mm  ×  3 mm cranial window cen­
tered over the left hemisphere at 3 mm lateral and caudal of 
bregma was created and the dura mater carefully removed. 
Single units were isolated in thalamus using an optrode:  
80 μm, 2 MΩ tungsten electrode (FHC), coupled to a 200 μm 
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optic fiber (Thorlabs). Blue light was conducted from an LED 
(470 nm, ThorLabs) to the thalamus via the optic fiber. Prior to 
the experiment, an optical power meter was used to measure 
the light intensity emitted from the tip of the fiber when peak 
command voltage (5 V) was sent to the LED driver. We found 
a linear relationship between command voltage and light 
intensity. Therefore, we estimated the light inputs reported in 
this study by scaling the command voltage accordingly.

All signals were recorded using a Tucker Davis 
Technologies (TDT) RZ2 Bioprocessor. Extracellular voltage 
was recorded at 24.414 kHz and bandpass filtered from 500 to 
5000 Hz. Single unit spikes were manually thresholded, their 
dimensionality reduced using principal component analysis, 
and clustered in this reduced space using K-means. Measured 
spikes were then smoothed into an online estimate of instan­
taneous firing rate, and a proportional-integral (PI) controller 
was used to modulate the amplitude of optical stimulation of 
the neuron (figures 1(A) and (B)). In post-hoc analysis, we 
found that optical artifacts were minimal, especially when 
considering the 500 to 5000 Hz band used for spike thresh­
olding/sorting. We also found that spikes used for feedback 
during control epochs did not significantly differ from the 
spikes that occured spontaneously in inter-trial-intervals.

At the conclusion of each experiment, animals were sacri­
ficed using an overdose of sodium pentobarbital.

2.2.  Reference trajectories

2.2.1.  Sinusoidal.  To extend beyond the methodology laid 
out by [19] for maintaining a constant firing rate, we designed 
the control system to elicit sinusoidally-modulated rates of the 
form

λi = σ sin (2πfmod∆i) + µ ,

where σ, fmod, μ, i, and Δ are the amplitude, modulation fre­
quency, DC firing rate, time index, and sample period, respec­
tively. Such a parametric time-varying reference is the ideal 
starting point for this design problem. Motivated by firing 
rates observed in the awake animal (see next section), all ref­
erence trajectories had mean firing rates of 20 spikes s−1. To 
focus our investigation further, the sinusoidal reference trajec­
tories used here were maximally modulated about the mean 
(i.e. σ = µ). The control system was tuned for 1, 5, or 10 Hz 
modulated patterns.

2.2.2.  Non-sinusoidal trajectory.  In order to test the results of 
the design procedure on a non-sinusoidal reference trajectory 
of interest, we used an example of rate modulation observed 
in single-unit data recorded in the VPm of an awake rat (data 
from [22]).

Rhythmic spiking activity possibly related to the animal 
moving its whiskers was identified in a subset of trials. To 
inspect for rhythmic spiking, spike trains were smoothed 
using a Gaussian window with standard deviation (SD) of 
20 ms and autocorrelograms calculated for each trial. Putative 
‘whisking’ trials (n = 3) were identified by peaks in corre­
lation located at lead/lag of 100 ms, corresponding to 10 Hz 
which is within the natural frequency range of whisking [23–
25]. Spike trains from these trials were aligned such that their 
cross-correlations had a peak at zero-lag, and the resulting 
PSTH was smoothed with a Gaussian window of 20 ms SD, 
resulting in the reference trajectory shown in figure 2(C). The 
mean (i.e. DC) firing rate of this signal was approximately 

Figure 1.  Closed loop optogenetic control of firing rate. (A) Physical diagram. (B) System block flow diagram. (C) Procedure for closed-
loop stimulation experiments. The observer was designed for a given reference firing rate pattern previous to experiments. A model was fit 
to data recorded for system identification during the experiment. Using this model, controller gains were optimized in simulation. These 
parameters were then used for experimental closed-loop stimulation.
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20 spikes s−1, and 95% of the total power in this signal was 
between DC and 10 Hz. Note that approximately 50% of the 
power in this signal occurred at DC.

2.3.  Observer design

The closed-loop control system had two designed components: 
an observer and controller. An observer is a mathematical con­
struct put in place to estimate state variables of interest for 
control when the state is not directly measured. In this context, 
the observer was tasked with estimating the latent firing rate 
from an evolving spike train measured extracellularly. Given a 
raw measure of instantaneous firing rate, n/∆ (either ∆−1 or 0 
if there is/is not a spike, where Δ is the sampling period), the 
observer yields an online estimate of the latent rate, λ̂.

2.3.1.  Fixed-bandwidth smoothing.  Fixed-bandwidth smooth­
ing was used to estimate the firing rate online. An exponen­
tial window was chosen because it is causal and efficiently 
computed online as a first-order recursive filter. The filter  

was characterized by a single parameter, its decay time  
constant (τ):

λ̂i = αλ̂i−1 + (1 − α)
ni

∆

where,

α = exp

(
−∆

τ

)
,

and i and Δ are the sample index and sample period, 
respectively.

2.3.2.  Parametric sweeps for optimal sinusoidal rate estima-
tion.  In designing the bandwidth of the exponential filter, 
the goal was to choose a filter which provided an appropri­
ate amount of smoothing such that the underlying firing rate 
could be accurately recovered from measured spikes. Consis­
tent with previous work (e.g. [26–29]), the filter bandwidth 
was designed in simulation by minimizing the mean inte­
grated squared error (MISE) between a ground truth firing rate 
pattern and the estimate:

Figure 2.  Closed- versus open-loop optogenetic control of dynamic firing rate trajectories. (A) Closed- and open-loop control of 
sinusoidally-modulated firing rate. Closed-loop (black) control and pulsatile open-loop (red) stimulation were used to elicit a 1 Hz 
sinusoidally modulated firing rate. Light lines correspond to single trial firing rates estimated by smoothing spike trains with a Gaussian 
window (120 ms SD); bold lines are the trial-averaged rate. Average control inputs (i.e. light) are below the corresponding firing rate 
trajectory. (B) Closed- and open-loop control in presence of a disturbance. Control was challenged with a whisker disturbance at 2 s into 
the control epoch, as shown in gray (top). (C) Closed-loop and open-loop control of non-sinusoidal firing rate. Top, firing rates for closed-
loop (black) versus open-loop (red) control: average in bold, while fills represent 95% confidence intervals for smoothed PSTH. Middle, 
Fano factor calculated in 250 ms sliding window for closed- and open-loop control (n  =  25 trials). Bottom, trial-averaged control inputs for 
closed-loop (black) or open-loop (red).
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τ∗ = arg min
τ

〈
1
NI

NI∑
i=1

(
λi − λ̂i

)2
〉

,

where 〈·〉 denotes trial-averaging and λ̂ is the rate estimated 
by filtering the spike trains generated according to Poisson 
statistics from the ground truth rate, λ. Here, λ was taken to 
be the reference firing rate pattern of interest, λr . Depending 
on the properties of this pattern, the MISE-optimal estimator 
may smooth out the temporal modulation due to a scarcity of 
spikes within a period of oscillation. Koyama and Shinomoto 
[27] discussed such ‘divergent’ solutions in the context of 
designing the optimal bin width for constructing a peristim­
ulus time histogram (PSTH).

In the case of sinusoidal rates used here, the optimal filter 
time constant depended upon the expected number of spikes 
per period of the sinusoid, (µ Ntrials) /fmod, and the degree of 
the modulation as defined by the ratio of amplitude to DC 
offset of the sinusoid, σ/µ, where Ntrials is the number of trials 
used for estimation. To develop a parametric expression for 
the filter design, we determined the optimal time constant for 
different conditions of a simulated rate-modulated Poisson 
process.

In simulation, four parameters were swept: the modulation 
frequency of the driving sinusoid (fmod), the mean firing rate 
(DC offset of the sinusoid, μ), the amplitude of the sinusoid 
around the mean (σ), and the number of trials used for esti­
mation (Ntrials). Note that at the conclusion of the design, we 
sought time constants that were optimized for single-trial esti­
mation: i.e. where Ntrials = 1. For the rates used in this study, 
we focused on the specific cases where µ = 20 spikes s−1 and 
σ/µ = 1.

The MISE-optimal filters (τ∗) were calculated for a range 
of frequencies, mean rates, modulation intensities, and 
number of trials. In keeping with Koyama and Shinomoto 
[27], a power law relationship was fit to these data for τ∗ to 
yield a tuning curve of estimated time constants, τ̂ :

τ̂ fmod = bz−a ,

where [27] defined z as

z ≡
(

µ

fmod
Ntrials

)(
σ

µ

)2

.

2.4.  Linear-nonlinear Poisson model

Previously, an ad hoc approach to controller design demon­
strated proof-of-principle feedback optogenetic control [19]. 
Here, however, we sought a principled approach that general­
ized to dynamic reference trajectories. To finely tune the con­
troller during experiments, we used a linear-nonlinear Poisson 
(LNP) model to approximate the response of the neural 
system to optical stimulation. The controller gains (Kp, Ki) 
were tuned around the LNP model in simulation. In this model 
structure, a linear system (denoted L) was cascaded with a 
static nonlinearity (N) to produce a latent firing rate which 
drives a Poisson spike generator (P) and emits spikes.

The optical stimulus was filtered through a feedforward 
linear system described by the kernel, k:

x = U k ,

where U is the stimulus design matrix in which the ith row is 
a vector of stimulus history over a time window up to time i. 
The output of this linear system, x, was then mapped through 
a static nonlinearity (e.g. [30]):

λi(θ, xi) = α log [1 + exp (gxi + m)] ,

where θ = [m, g, α]
ᵀ are parameters describing the static 

nonlinearity. m serves as a bias term reflecting neural firing 
that does not co-vary with stimulation (i.e. spontaneous firing 
rate). g and α together set the effective DC gain of the model 
neuron’s response to light stimulation as it approaches the 
asymptotically linear region of the curve, whereas their rela­
tive values set the knee of the nonlinearity.

During the experiment, an LNP model was fit to spiking 
data recorded in response to repeated presentations of a 5 s 
instantiation of optical uniform white noise. The range of 
this noise was titrated for each cell to avoid apparent depo­
larization block, but on average ranged between 0 and 
8.5 mW mm−2. The white noise stimulus was mean-subtracted 
and a light-to-spiking kernel, k̂, was estimated by reverse cor­
relation (‘rotated’ or ‘whitened’ spike-triggered averaging,  
e.g. [31–33]):

k̂ =
(
UTU

)−1 UTn ,

where n is the vector spike signal (1 or 0 if there is/is not a 
spike measured). To avoid ambiguity between the static gain 
of the kernel and the scaling factor applied to the output of the 
kernel in the nonlinearity (g), the kernel was normalized by its 
static gain: k̂1. The stimulus was filtered with this normalized 

kernel, yielding x, and the remaining parameters 
(
θ̂
)

 were fit 

by maximum likelihood:

θ̂ = arg max
θ

∑
J

∑
I

nij log [λij(θ, xij)∆]− λij(θ, xij)∆ ,

where i and j denote the time and trial index, respectively. Note 
that [34] fit LNP models by maximum likelihood, with the 
kernel parameters only initialized using the values predicted by 
whitened spike-triggered averaging (STA). In our application, 
we found that the kernels resulting from this approach were pri­
marily scaled versions of the STA estimate, k̂ . Because param­
eter g accounts for this scaling, we found that it was unnecessary 
to re-estimate the kernel parameters in practice. This allowed 
for the model to be fit quickly and dependably during the exper­
iment, where experimental viability is time-limited.

2.5.  Controller design

We implemented a proportional-integral (PI) controller, which 
was defined by two parameters, Kp and Ki. Given a reference 
trajectory of interest, a choice for the observer time constant 
(section 2.3), and a model, these controller gains were tuned 
in simulation during the experiment.

J. Neural Eng. 15 (2018) 026011
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2.5.1.  Control law.  The PI controller was implemented in its 
parallel form:

êi = λr
i − λ̂i

ui = Kpêi + Ki

i∑
k=0

êk∆,

where Kp and Ki are the proportional and integral gains, 
respectively.

Note that due to the fact the light delivered can neither be 
negative nor exceed the limits of the LED output, the variable 
u was bounded between [0,1] and scaled to the dynamic range 
of the LED driver (5 V). For all simulations, the control signal 
was hard rectified and bounded as was done in hardware to 
ensure actuation was subject to the same limitations.

2.5.2.  Objective function.  A common objective for control­
ler design is to minimize the integrated squared tracking error 
(e.g. in the context of PID control [35]). We found that tun­
ing the controller to minimize the integrated squared error 
between the reference and online estimate of rate (i.e. between 
λr  and λ̂) yielded undesired tracking behavior, especially at 
higher frequency references where the firing rate estimate is 
less accurate (see insets of figure 3(C), section 3.2). Because 

observer estimates are on average slightly lagged and attenu­
ated in amplitude compared to ground truth, if stimulation 
were optimized around this estimate, the resulting neural fir­
ing would lead the target and be of larger amplitude. To avoid 
this behavior, we instead tuned the controller by minimizing 
the squared error between the reference (λr) and the raw mea­
sure of instantaneous rate (n/∆), which neither imposes lag 
nor amplitude attenuation on the estimate.

While minimizing this raw tracking error ameliorates the 
aforementioned problems, the highly punctate nature of the 
n/∆ estimate of rate and the large error incurred each time 
the neuron spikes (λr −∆−1) mean that simply minimizing 
the integrated square of the error, e = λr − n/∆, yielded 
trivially low solutions for controller gains where the neuron 
never spikes. This motivated controller design in the fre­
quency domain, where the effects of the spiking error can 
be down-weighted relative to important tracking criteria. 
Because we are willing to tolerate error that occurs at fre­
quencies higher than those of interest for a control task, we 
avoided trivial low-gain solutions by weighting the squared 
error in the frequency domain according to the spectral 
content of the reference trajectory (w), thereby penalizing 
error at frequencies according to their significance for the 
intended control.

Figure 3.  Observer design: Choosing filter bandwidth. (A) Conceptual diagram. A given sinusoidal firing rate (λ) drove a Poisson spike 
generator (P). The resulting spike train was multiplied by ∆−1 (not shown) ahead of filtering. Filters parameterized by a time constant, 
τ, yielded an estimate of the true rate. (B) Optimal time constant as a function of expected number of spikes per period and degree of 
modulation about mean (top) and as a function of z (bottom). For visualization, the optimal filter has been normalized by the frequency 
of each sinusoid. Fit: a  =  0.423, b  =  0.389. (C) Filter time constants designed for single-trial estimation where µ = 20 spikes s−1, 
σ/µ = 1. Bold purple, region of frequencies where the derived design equation was fit. Light purple, frequencies at which the the design 
equation was extrapolated (z < 12). Insets, example single-trial estimates (purple) of the ground truth rate (green) at indicated modulation 
frequencies.
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We calculated the frequency-domain amplitude of the 
tracking error, e, as well as that of the reference trajectory:

E[ f ] = |F{e}|
R[ f ] = |F{λr}| ,

where F{·} denotes the Fourier transform.
The spectral content of the reference was used to create 

frequency-dependent weights:

w[ f ] =
R2[ f ]∑Nf

f=0 R2[ f ]
,

where Nf corresponds to the Nyquist frequency.
These weights were used to calculate a modified squared 

error metric where the frequency spectrum of the error was 
penalized as a function of importance for the control task:

Jfwt (Kp, Ki) =

〈 Nf∑
f=0

w[ f ] E2[ f ]

〉
,

where 〈·〉 denotes the across-trial average.
Finally, controller gains were chosen to minimize Jfwt, 

using a numerical solver (ga, Mathworks, Inc.):
[
K∗

p , K∗
i

]
= argmin

Kp,Ki
Jfwt (Kp, Ki) .

2.6.  Open-loop stimulus design

To assess the benefits of utilizing feedback with optogenetic 
stimulation, we designed open-loop stimuli for each control 
task (i.e. sinusoids, and a more natural non-sinusoidal trajec­
tory). In figures  2(A) and (B), we compare pulsatile open-
loop stimulation (most commonly used stimulation mode) 
with closed-loop, continuous modulation of light amplitude. 
In this scenario, 5 ms pulses were generated by varying the 
frequency of a carrier wave according to the desired firing 
rate. To determine the appropriate pulse amplitude at the 
time of the experiment, a static logistic mapping was fit to 
the response to pulsatile inputs of varying amplitude, where 
light inputs were presented at the DC firing rate of the target 
trajectory (i.e. 20 pulses s−1). The amplitude of stimulation 
was chosen such that approximately 1 spike/pulse was gener­
ated on average.

In all other cases of open-loop control, a static mapping 
from light intensity to firing rate was estimated by fitting a 
logistic curve to the steady-state firing rate in response to 1.5 s 
step inputs of light at various amplitudes. Open-loop control 
signals were designed for sinusoidal and non-sinusoidal firing 
rate trajectories by inverting this curve (i.e. using this curve as 
a lookup table).

2.7.  Disturbance

A load disturbance in the form of whisker stimulation was 
used to challenge both open-loop and closed-loop control 
strategies. Using a computer-controlled galvanometer motor 
[20, 36, 37] positioned approximately 10 mm from the ani­
mal’s face, sensory white noise was applied to the thalamic 

neuron’s principal whisker [20] at two seconds into the con­
trol epoch.

2.8.  Offline firing rate estimation

All reported firing rates were estimated offline 
(
λ̄
)
 using an 

appropriate Gaussian window to smooth either single-trial 
(figures 2(A) and (B)) or trial-averaged spike trains binned at 
1 ms resolution. In the case of the slowly-modulated rates in 
figures 2(A) and (B), the same procedure used for designing 
the observer time constant was employed to estimate an MISE-
optimal SD of a Gaussian window. Because accurate single-
trial estimation is difficult at higher frequencies, for all other 
firing rate estimation reported here, a Gaussian window was 
used to smooth a trial-averaged peri-stimulus time histogram 
(PSTH). The SD of this filter was chosen for each reference 
trajectory (i.e. 5 Hz or non-sinusoidal) in the same way as 
before except now for multiple trials: the MISE-optimal width 
for recovering the reference rate from a PSTH of simulated 
Poisson spikes, averaging the same number of trials collected 
experimentally. Bands around these trial-averaged firing rate 
estimates are 95% confidence intervals for the smoothed 
PSTH, bootstrapped by sampling the trials with replacement.

2.9.  Fano factor

Trial-to-trial variability in spike count was quantified using 
the Fano factor [38] calculated in a 250 ms sliding window:

FF =
var [N250]

〈N250〉
,

where N250 is the spike count per 250 ms window of time and 
〈N250〉 indicates the across-trial average.

3.  Results

Here, we develop a design strategy for closed-loop control 
that could be applied to a range of different neural circuits. 
We have applied this design strategy to the problem of closing 
the loop around the spiking activity of a single neuron in the 
somatosensory thalamus of the rat in vivo, as illustrated in 
figure 1(A). Specifically, the input to the ‘neural system’ was 
light delivered by way of a fiber optic cable inserted deep into 
the brain, targetting the somatosensory thalamus. Blue light 
(470 nm) drove the depolarization of excitatory thalamic neu­
rons expressing channelrhodopsin (ChR2). Spiking activity of 
a single thalamic neuron was measured using a tungsten extra­
cellular recording electrode bundled to the fiber optic cable 
(often referred to as an optrode).

The block-diagram of the control system is shown in 
figure 1(B). We applied light input u to the ‘neural system’ 
or plant, whose activity was measured through neural spiking 
activity n. For the current application, we have taken time-var­
ying trajectories of firing rate to be the control objective, and 
thus the feedback signal consisted of an observer’s estima­
tion of instantaneous firing rate. A proportional-integral (PI) 
controller acted on an error signal defined as the difference 
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between the reference/desired time-varying firing rate λr  and 
the observer’s estimate of the instantaneous firing rate, λ̂. 
Control was effected in the face of unobserved disturbances, 
d, which could take the form of uncontrolled inputs and/or 
changes in the dynamics of the system.

In this context, closed-loop control required the real-time 
sorting of spiking activity from recorded extracellular signals 
and estimation of instantaneous firing rate by an observer. 
This estimated rate was fed back, and a PI controller oper­
ates on the resulting error signal, modulating the light input 
to the optic fiber and optogenetically manipulating thalamic 
membrane polarization. Furthermore, the design procedure 
required identification of the dynamics of the neural system 
during the course of the experiment; combined with testing 
the controller design, this places serious demands on the dura­
tion of an experiment, which is typically limited to approxi­
mately 2–3 h. The timeline and task demands are outlined in 
figure 1(C).

3.1.  Examples of closed- versus open-loop stimulation

Before unpacking the technical details of the system design in 
subsequent sections, we first present examples representing the 
basic abilities of the closed-loop framework versus open-loop 
stimulation strategies to track slowly-modulated reference 
firing rates (here, 1 Hz), reject exogenous disturbances, and 
track complex, biologically relevant trajectories in firing rate.

In the example for controlling a 1 Hz sinusoidal firing 
rate provided in figure  2(A), pulsatile input was used for 
open-loop stimulation (bottom). Note that for this instance 
of open-loop control, pulsatile inputs were used since this is 
the most common way to stimulate ChR2. Single-trial and 
trial-averaged estimates of firing rate are shown for closed-
loop (top) and open-loop (bottom) cases. For the open-loop 
case, measured firing activity was not utilized in shaping 
the light input, but instead the amplitude of the light inputs 
were designed based on previous measurements of number 
of spikes elicited as function of pulse amplitude (see sec­
tion 2.6). In each scenario, the trial-averaged input (i.e. light 
intensity) is plotted below the corresponding firing rate. The 
control epochs begin at time zero. Both closed- and open-loop 
stimulation strategies achieved the target firing behavior on 
average in the undisturbed scenario (figure 2(A), thick red and 
black versus green). However, single-trial estimates of firing 
rate (thin red lines, smoothed with a 120 ms SD Gaussian 
window) reveal that open-loop stimulation resulted in more 
variable rate trajectories than closed-loop for this example.

A major benefit of a closed-loop system is its capacity to 
react to changes in ongoing activity and reject disturbances, 
as illustrated in figure 2(B). For the same example thalamic 
neuron in figure 2(A), we identified the whisker on the con­
tralateral side of the animal’s face to which the neuron 
responded most robustly, often referred to as the ‘principal 
whisker’. A whisker disturbance (see section 2.7) begins at 2 s 
into the control epoch. During the application of the distur­
bance, closed-loop stimulation was able to adjust to maintain 
reasonable control of the 1 Hz trajectory (figure 2(B), top). 
Conversely, in the case of open-loop stimulation (figure 2(B), 

bottom), the firing rate was unsurprisingly increased well 
above the reference. It is also of interest to note that, while the 
same open-loop pulsatile stimulus was used in figures 2(A) 
and (B), the effectiveness of stimulation was weaker in the ini­
tial 2 s of the control epoch before the onset of the disturbance. 
Given that time elapsed between these two recordings, this 
phenomenon speaks to apparent non-stationarity in the system 
for which closed-loop stimulation is able to compensate, even 
over relatively short timeframes.

We also challenged the control framework with a non-
sinusoidal, reference trajectory derived from spiking in an 
awake animal (section 2.2.2), as shown for a different tha­
lamic neuron in figure 2(C). As described in the section 2.2.2, 
we separately recorded single unit firing activity in the VPm 
thalamus of the awake rat during active whisking, and used 
this to generate a more ‘naturalistic’ non-sinusoidal firing rate 
trajectory to track in these separate experiments. Note that 
open-loop control performed qualitatively similarly to closed-
loop control on average in this example, although closed-loop 
does provide modest improvements in tracking. However, in 
agreement with the sinusoidal trajectories above, closed-loop 
stimulation results in lower trial-to-trial variability, as shown 
by Fano factor (FF), where the variability of closed-loop con­
trolled firing generally falls below open-loop.

These examples of control shown in figure  2 depended 
upon the design and implementation of both the observer and 
controller elements of a closed-loop system, which we further 
detail below, before returning to further analyses of the con­
trol performance.

3.2.  Observer design

The observer was tasked with estimating the latent firing rate, 
given spiking activity measured online. As described in detail 
previously (section 2.3), for simplicity of real-time imple­
mentation the observer was implemented in the form of an 
exponential filter with a single parameter, the decay time con­
stant τ. Figure 3(A) shows the basic concept for the design 
strategy, where a Poisson spike generator was driven with a 
sinusoidal rate function, λ, and the observer estimated the 
latent rate from the spiking activity by filtering the spike train. 
The goal of the design procedure was to choose the filter time 
constant that optimally recovered the underlying sinusoidal 
rate. Shown are the results for an illustrative example where a 
simulated spike train was filtered with one of three values of 
the decay time constant τ (actual rate in green and estimated 
rates in purple shown on the right; bottom: too slow, top: too 
fast, middle: MISE-optimal).

As described in detail in section 2.3, for sinusoidal modu­
lation the optimal observer in this framework depended upon 
the baseline (DC) offset of the sinusoid (μ), the modula­
tion frequency (fmod), the amplitude (σ), and the number of 
trials used for estimation (Ntrials), which together influenced 
the optimal filter bandwidth for recovering sinusoidal rate 
modulation from recorded spikes. Plotted on the top panel of 
figure 3(B) are the MISE-optimal values of the observer decay 
time constant, τ∗, as a function of the number of spikes/period 
of the sinusoid, for varying degrees of modulation (σ/µ). As 
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expected, the MISE-optimal filter time constant decreased 
with increasing number of spikes per period and modulation 
intensity. We then used the quantity z defined by Koyama and 
Shinomoto [27] to reduce the dimensionality (see section 2.3). 
The disparate curves in the top panel of figure 3(B) then col­
lapsed to a single curve when plotted as a function of z (figure 
3(B), bottom). We fit a power law relationship for the optimal 
time constant using least-squares, the result of which is shown 
in red in figure 3(B) (bottom): a  =  0.423, b  =  0.389.

In the case of the sinusoidal firing rates utilized in the 
remainder of this study, where modulation amplitude was 
maximal (i.e. σ/µ = 1), the MISE-optimal filter masked tem­
poral modulation in favor of capturing the DC firing rate if 
there were fewer than 12 spikes per period. More generally, 
this corresponds to a regime where z  <  12 in which there was 
a deficit in spiking data on a single-trial basis (denoted by the 
vertical gray line in figure 3(B), bottom). As such, these data 
points were excluded from the regression. For the rates used 
in the remainder of this study where µ = 20 spikes s−1, this 
corresponded to frequencies greater than 2 Hz (figure 3(C), 
light purple). By extrapolating the expression for observer 
time constant that was developed and fit in the regime where 
z  >  12, we arrived at choices for time constants that did not 
smooth out temporal modulation at higher frequencies despite 
this fundamental limit while still providing a reasonable degree 
of smoothing, as seen in figure 3(C) (insets). From the insets 
which provide examples of single-trial estimation of a 1 Hz, 
5 Hz, and 10 Hz sinusoidal rates from spikes, it is apparent 
that when the modulation frequency reached 10 Hz for this DC 
offset, spikes were too infrequent per period of oscillation to 
recover the sinusoid accurately on a single-trial basis.

The net result of this procedure was a relationship between 
the observer filter time constant and the parameters of the 
sinusoidal rate which was valid in a regime where there was 
sufficient data to resolve the temporal modulation. When 
the rate estimation was data-impoverished, this relationship 
allowed us to estimate what the filter time constant would be 
if not for this fundamental limit. Therefore, while it is impos­
sible to faithfully recover higher frequency modulation on a 
single-trial basis, this approach provides a principled choice 
of observer time constant that does not smooth out the rate 
modulation.

3.3.  Controller design

Given the design for observer time constant, we developed 
a PI controller design strategy for tracking sinusoidal trajec­
tories of different frequencies (1, 5, 10 Hz). For principled 
design of the controller, we undertook a brief system identifi­
cation step during the course of the experiment to fit a model 
for the neural system, consisting of a cascade of a linear filter, 
static nonlinear function and Poisson spike generator (LNP 
model), as will be described in more detail below. Controller 
gains were then tuned in simulation using the LNP model fit 
to data in place of the neural system (figure 4(A)), followed by 
implementation in the experiment.

To tune the controller, we chose gains which minimized 
the squared error between the reference rate and the measured 

spiking signal. This noisy error signal was weighted in the fre­
quency-domain according to the importance of a frequency for 
the intended control (see section 2.5.2). In the context of sinu­
soidal trajectories used here (where σ = µ), the frequency-
weighted squared error objective function (section 2.5.2) 
evenly penalized error at DC and the modulation frequency.

To illustrate the tuning procedure, we used an experimentally 
fit LNP model for simulation. The frequency-weighted error 
metric is shown as a function of the proportional controller 
gain (Kp) and the integral controller gain (Ki) for a 5 Hz sinu­
soidal trajectory (figure 4(B)). The result of the minimization 
was that there were optimal controller gains (circle symbol) 
which yielded improvement over two suboptimal examples  
(x & triangle symbols). This is shown more explicitly with sim­
ulated examples (figure 4(C), bottom), where desired (green) 
and achieved (black) firing rates are plotted for the three sets 
of control parameters. In the middle row of figure 4(C), the 
resulting error spectra for these three tunings are compared 
to the error expected for a Poisson spike generator (PSG) that 
has been driven at the reference rate (light grey). The spec­
trum for the reference-driven PSG shows the error that results 
purely as a function of random spiking, rather than off-target 
firing rate modulation. Because of the use of feedback, the 
spikes resulting from simulated closed-loop control are not 
truly random, leading to less error at low frequencies than 
would be expected in the Poisson case (black versus grey 
error spectra). The peaks in error at 2fmod  (here, 10 Hz) in 
figure 4(C) occur because the controlled neuron can sponta­
neously fire even when the reference rate is zero, resulting in 
errors at the troughs of each period. This in combination with 
error that occurs at peaks of the sinusoidal reference results 
in some power at double the modulation frequency. In com­
parison to the other two examples, the optimal tuning clearly 
reduces the error at both DC and fmod. For the sinusoidal tra­
jectory used here, the tuning procedure involved minimizing 
the combined error at DC and modulation frequency, illus­
trated in figure 4(C) (top) as the square-root of the frequency-
weighted squared error metric (Jfwt).

3.4.  Model accuracy and closed-loop performance

In the development of a strategy for closed-loop controller 
design, the above results relied upon knowledge of the 
dynamics relating the light input for optogenetic stimula­
tion and the neuronal firing. In an experimental context, we 
must therefore estimate a model that captures this relationship 
between the light input, u, and the measurement, n, (figure 
5(A)) for use in controller design. We utilized a band-limited 
‘white-noise’ optical input for driving the thalamic neuron 
experimentally and fit a simple linear-nonlinear-Poisson 
(LNP) cascade to capture these dynamics (see section 2.4). An 
example LNP fit is shown in figure 5(B). Note that the kernel 
is plotted time-reversed for visualization.

To understand how accurate these LNP models were, we 
tested their ability to predict the input-output relationship in 
the operating regime observed during a control epoch. Upon 
investigating how the LNP models responded to control inputs 
used during closed-loop stimulation experiments, we found 
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that the models produced varying levels of success in pre­
dicting the observed firing activity of the thalamic neurons. 
Shown in figure  5(C) is one such representative example 
where light inputs used experimentally for tracking a 5 Hz 
sinusoidal target trajectory were presented to the neuron’s 
corresponding LNP model. The response of the LNP model 
neuron (red) did not accurately predict the experimental rate 
(black). Given a wealth of literature suggesting difficulty in 
obtaining predictive models of neuronal firing in vivo beyond 
the sensory periphery (e.g. [39, 40]), this finding is perhaps 
unsurprising.

However, because these models were used for tuning the 
controller gains in simulation, it is more important to assess 
their predictive capability in the context of closed-loop opera­
tion. The use of feedback for control conferred some robust­
ness to model inaccuracy, and although the LNP model was 
in general not a good predictor of neuronal firing activity 

in open-loop, the model produced outputs that agreed with 
experimental results when simulated in the context of closed-
loop control. Figure 5(D) provides an example where the same 
model neuron in figure 5(C) was simulated in the closed-loop 
system parameterized by the observer time constant (τ) and 
controller gains used experimentally. In this case, the firing 
rate of the model neuron (blue) more closely matched the 
experimentally-realized firing (black).

3.5.  Robustness of control to model inaccuracy

Given the observation that the LNP models used for controller 
tuning were generally poor predictors of experimental data in 
the open-loop sense, it is important to know to what extent 
the controller performance was robust to modelling error in 
this context. Therefore, we set out to determine more system­
atically through simulation how robust control performance 

Figure 4.  Controller design: tuning the controller around an LNP model neuron. (A) Controller design through simulation. The closed-loop 
system was simulated with a model of the neural system for design purposes. (B) Example tuning surface for 5 Hz sinusoidal trajectory. 
In simulation, the controller was tasked with tracking a sinusoidal trajectory (here, 5 Hz), using the observer designed previously for the 
corresponding reference. The objective was to minimize the squared tracking error, weighted as a function of frequencies important for the 
control task. (C) Examples of optimal and suboptimal controller gains. Frequency-domain error (top row) corresponds to amplitude of error 
between the raw instantaneous rate (n/∆) and the reference at DC and the modulation frequency (here, 5 Hz). For comparison, the square 
root of the frequency-weighted squared error (Jfwt) is also provided. Error bars correspond to  +1 SD. Corresponding error spectra are 
provided (middle row), as compared to a simulated Poisson process modulated at the reference rate (light grey). Green lines highlight DC 
and fmod. Finally, time-domain tracking is provided (bottom).
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was to inaccuracy in two identified LNP model parameters: 
gain and bias. Taking an LNP fit to experimental data, the 
PI controller was tuned around it, as would be done during 
an experiment. We then tested these controller parameters 
on perturbed versions of the original LNP model, where the 
static gain and the bias term of the linear component of the 
LN model were changed systematically. To quantify the dis­
tance between the performance of the original and perturbed 
systems, the percentage change in tracking performance was 
calculated by comparing the error (Jfwt) for the perturbed 
models to that of control around the original LNP. Further, 
to assess the effect of model inaccuracy on ‘steady-state’ 
tracking performance, Jfwt was calculated from 1 s onward for 
5 s control epochs. To inspect for added benefit of closed-loop 
stimulation as opposed to open-loop, the tracking error was 
assessed for the perturbed models in both closed- and open-
loop contexts. For the latter, light inputs used to control the 
original LNP were presented to the perturbed versions of the 
model in open-loop.

Decrements in control performance due to model inacc­
uracy are illustrated in figure 6 for tracking a 5 Hz sinusoidal 
reference, using an example LNP fit to experimental data. The 
schematic in figure 6(A) shows the two parameters that were 
varied: the static gain (g) and the bias term (m) of the LNP 
model (see section 2.4). Altering g increases or decreases the 
apparent ‘sensitivity’ of the neuron to optical drive. The bias 
term reflects the baseline firing rate in the absence of optical 
drive. Contrary to section 2.4, for this analysis, LNP models 
were fit with α equal to 1 to control for differences in the knee 
of the nonlinearity. Note also that in the analysis shown here, 

the shape of the kernel was retained. The parameters g and m 
were perturbed over a range extending from five times smaller 
to larger than the original values for which the controller 
was designed and the decrements in controller performance 
quantified (figure 6(B)).

While there is interaction between the effects of the two 
parameters on control performance, changing the bias led to 
binary effects, as the performance quickly transitioned from 
optimal to very poor, moving from left to right in figure 6(B). 
This observation is made plain when holding the static gain at 
the nominal value and fractionally changing the bias (figure 
6(C)). Note that the identified bias term was negative. As the 
bias term approached zero (i.e. xm decreases), this increased 
the baseline firing rate of the model neuron. Conversely, 
as the bias became more negative than the original value  
(xm increases), this mapped the output of the linear portion 
of the LN model to the highly nonlinear portion of the static 
nonlinearity.

In figure  6(C), the change in tracking performance for a  
5 Hz sinusoid is shown for both closed-loop stimulation (blue) 
as well as open-loop replay of the stimulation pattern used to 
manipulate the original (i.e. unperturbed) model (red). Except 
at extremes, closed-loop control was very robust to inaccurate 
estimation of the bias term. At these extremes, either the neu­
ron’s baseline firing rate exceeded the reference firing rate or 
the output of the linear component of the model was mapped 
to a regime of the nonlinearity where the LED or other light 
source was incapable of delivering inputs intense enough to 
raise the firing rate. In both of these scenarios, there would be 
little if anything a controller could do to salvage performance. 

Figure 5.  LNP model performance: open-loop versus closed-loop. (A) Fitting the linear-nonlinear (LN) model. (B) A typical LN model 
fit to training data. Left, the linear system estimated using whitened spike triggered averaging; error bars correspond to  +/- 1 SD for the 
lagged coefficients of the kernel when fit to ten subsets of the full training dataset. Right, the static nonlinearity fit by maximum likelihood, 
given the observed spikes. Gray points indicate the experimental firing rate (PSTH smoothed with 1 ms Gaussian) versus the kernel-filtered 
stimulus. (C) LNP prediction of response to open-loop ‘replay’ of stimulation used experimentally during a 5 Hz sinusoidal control task, 
using the same LN model shown in B. Top, firing rate predicted by the model (red) as compared to the experimental data for the same cell 
(black); bottom, experimental optical input. (D) LNP prediction of response to simulated closed-loop stimulation. Firing rate and light input 
predicted by the model (blue) as compared to the experimental data for the same cell (black); bottom, simulated (blue) and experimental 
(black) closed-loop stimulation.
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Figure 6(D) provides simulated examples for when the neuron 
being controlled (blue) was two times less biased (top) or two 
times more negatively biased (bottom) than the neuron for 
which the controller was tuned (black). In the first case, the 
baseline firing rate of the neuron in blue was too high to be 
effectively controlled. Conversely, in the case where the bias 
of the neuron was more negative (bottom), it took more light 
input (not shown) and, therefore, more time for the system to 
reach ‘steady state’ behavior. However, once the controlled 
system reached steady state, the tracking performance (blue) 
was identical to the that of original model neuron the con­
troller was designed around (black).

Holding the bias term at the original value and instead per­
turbing the static gain, figure 6(E) reveals that while the impact 
of inaccurate estimation of static gain on controller perfor­
mance was more graded, closed-loop control of time-varying 
trajectories was less robust to inaccurate estimation of gain 
than to the bias term. As before, it was the case that closed-
loop control (blue) offers a buffer against the effects of such 

model inaccuracy as compared to open-loop stimulation (red). 
Figure  6(F) provides examples for when the controller was 
tuned around a model that was two times more sensitive (top) 
or less sensitive (bottom) to light than the neuron being con­
trolled in blue. In the case where the neuron being controlled 
was less sensitive than the model around which the controller 
was designed (top), the controller achieved the correct DC 
firing rate, but was more weakly modulated than the target 
oscillatory activity. Conversely, where the neuron being con­
trolled was more sensitive to optical drive, there were periodic 
overshoots of the reference. Unlike the case of the bias term, 
there are relatively simple actions that could be taken in the 
future to ameliorate errors due to inaccurate gain estimation, 
including online re-estimation.

3.6.  Control summary: tracking a sinusoidal trajectory

Figure 2 provided a single example of tracking at 1 Hz. Here, 
we expand on this by presenting results for eliciting a 5 Hz 

Figure 6.  Robustness of control to model inaccuracy. (A) Model perturbation and simulation. The static gain (g) and the bias (m) of the 
linear component of the LNP model were systematically perturbed and simulated either in closed- or open-loop. (B) Grid search over gain 
and bias. Fractional changes in g and m ranged from five times smaller to five times greater than the original parameter value. Grayscale 
represents the percentage change in tracking performance (Jfwt) between that of the original model and each perturbed version. This 
tracking error was calculated from 1 s onward for 5 s control epochs. (C) Changing bias. Holding all else constant, m was changed, and 
the tracking performance was quantified for closed-loop control versus open-loop replay of the light traces used to stimulate the original 
neuron. Gray circles indicate the estimated biases of all recorded neurons relative to the model used for perturbation study (n  =  20). (D) 
Examples of simulated control when bias estimation inaccurate. (Top) Outcome when the actual neuron (blue) was two times less biased 
than the model around which the controller was tuned (black); (Bottom) the outcome when the actual neuron (blue) was two times more 
negatively biased than the model around which the controller was tuned (black). Scale bar indicates 20 spikes s−1. (E) Changing gain. 
Holding all else constant, g was changed and the tracking performance quantified for closed-loop control versus open-loop replay of the 
light traces used to stimulate the original neuron. Gray circles indicate the estimated gains of all recorded neurons relative to the model used 
for perturbation study (n  =  20). (F) Examples of simulated control when gain estimation inaccurate. (Top) Outcome when the actual neuron 
(blue) was two times less sensitive than the model around which the controller was (black); (Bottom) the outcome when the actual neuron 
(blue) was two times more sensitive than the model around which the controller was tuned (black). Scale bar indicates 20 spikes s−1.
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sinusoidal pattern in thalamic neurons recorded in separate 
animals. Figure 7(A) provides an experimental example for 
tracking a 5 Hz sinusoid at ‘steady-state’ 3 s into a control 
epoch. In this example, controller performance reached the 
level predicted in simulation for the LNP model used for 
design (‘Cell 3’ in figure 7(B), left versus middle). Again, 
the tracking error was quantified as the frequency-weighted 
squared error (Jfwt) between the raw measurement of rate 
(n/∆) and the reference (λr), either for the LNP model used 
to design the controller (figure 7(B), left) or for the experi­
ment (middle, right). In the case of the sinusoidal trajecto­
ries used here, Jfwt reflects even penalty placed on error at 
DC and the modulation frequency. As for the perturbation 
analysis (section 3.5), this metric was calculated from 1 s 
onward for 5 s control epochs. 95% confidence intervals for 
the metric were calculated for simulated Poisson firing at 
the reference rate and plotted as a light grey horizontal band 
(figure 7(B)).

In figure 7(B), each colored line corresponds to a different 
cell recorded in a separate animal, and the black bars represent 
the population average in simulated closed-loop (left), exper­
imental closed-loop (middle), and experimental open-loop 
(right). Here, open-loop stimulation was a continuously mod­
ulated light signal, designed as previously detailed (section 
2.6). Simulated control around the LNP model used for tuning 
provides a lower bound for the control error (CL LNP, left). 
While the level of performance achieved in simulation was 
not achieved experimentally (figure 7(B), middle), reasonable 
control was nonetheless achieved for all neurons in closed-
loop. In contrast, open-loop control was not as robust, with the 
designed stimulation sometimes resulted in much worse per­
formance than the closed-loop scenario (figure 7(B), right).

The control loop was also tuned for and tested on 1 and 
10  Hz sinusoidal trajectories. The tracking error of closed- 
versus open-loop control is provided for all frequencies tested 
(i.e. 1, 5, 10 Hz) in figure 7(C). When all sinusoidal tasks are 

considered, closed-loop control provides significantly lower 
tracking error (p  <  0.05, Wilcoxon signed rank test).

3.7.  Control summary: tracking a non-sinusoidal trajectory

For the non-sinusoidal rate trajectory estimated from 
spiking in the awake animal, 95% of the power in the ref­
erence signal was below 10 Hz. We found that of control 
systems designed for 1, 5, or 10 Hz sinusoidal trajectories 
with the same DC firing rate (20 spikes s−1) as this non-
sinusoidal signal, controller gains and observer time con­
stants designed for the 10 Hz trajectory outperformed lower 
frequencies (not shown).

Figure 8(A) provides an example where the system was 
tuned for a 10 Hz sinusoidal trajectory and tasked with 
tracking the non-sinusoidal pattern of rate modulation 
(‘Cell 5’ in figure 8(B)), as well as its corresponding error 
spectrum (figure 8(A), bottom). For comparison, the error 
spectrum of simulated Poisson firing at the reference rate 
is plotted in light grey. After a period of approximately 
750 ms, the neuron’s firing rate faithfully followed the ref­
erence. A controller/observer tuned for a 10 Hz sinusoidal 
trajectory did approximately as well as within-experiment 
simulations predicted (figure 8(B)). Again, controller per­
formance was quantified using the frequency-weighted 
squared error. Note that for this non-sinusoidal reference 
trajectory, 50% of its power lies at DC and 45% of the 
remaining power ranges from DC to 10 Hz; therefore, half 
the penalty is placed on achieving the correct average firing 
rate, while the remaining half of the penalty is primarily 
exerted at and below 10 Hz. In all cases, open-loop stimula­
tion proved less effective than closed-loop. Furthermore, as 
was first shown qualitatively for a single cell in figure 2(C), 
the response to open-loop stimulation was also more 
variable than in the case of closed-loop stimulation. We 
observed this phenomenon across cells (n  =  5), where the 

Figure 7.  Sinusoidal tracking performance. (A) Example experimental implementation (‘Cell 3’) where the controller and observer 
were tuned for a trajectory modulated at 5 Hz. The third of a 5 s control epoch is shown. (B) Population performance for tracking a 5 Hz 
sinusoidal trajectory (LNP prediction versus experimental): average (black bar) and individual cells (colored symbols). 95% confidence 
intervals for this metric were calculated for simulated Poisson firing at the reference rate and plotted in light grey. Left, results of 
design procedure predicted by the LNP models fit and tuned around during the experiment. Middle, experimental closed-loop tracking 
performance. Right, experimental open-loop tracking performance. (C) Closed- versus open-loop experimental performance on 1, 5, & 
10 Hz sinusoidal control tasks. Closed-loop tracking error is significantly less than open-loop (p  <  0.05, Wilcoxon signed rank test, n  =  12 
comparisons, four different cells).
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spike-count variability, as measured by time-averaged Fano 
factor calculated in a 250 ms sliding window, was greater in 
open-loop than in closed-loop (figure 8(C)).

4.  Discussion

The advent of new tools for measuring and manipulating 
activity within complex neural circuits opens up a wealth of 
possibilities for more interactive electrophysiological experi­
ments, where feedback is used to inform stimulation continu­
ously. Previously, we laid the groundwork for using optogenetic 
control to manipulate neural activity with continuous use of 
feedback [19]. Specifically, the previous study was a proof-
of-concept concerned with the demonstration of holding firing 
rates constant over long control epochs. Further, while holding 
firing rate steady is certainly of scientific interest for probing 
the functions of neural circuitry near steady-state, generaliza­
tion of the closed-loop control approach to time-varying pat­
terns of firing would open up a range of new applications and 
lines of investigation. Therefore, in the present study we have 
developed and demonstrated a design strategy for using closed-
loop stimulation to track time-varying patterns of firing rate.

Ranging from intracellular current injection to electrical 
and optogenetic stimulation, there has been previous work 
using open- and closed-loop control strategies to manipulate 
neural firing patterns (e.g. [7, 8, 15, 41–44]). Because spiking 
is often thought of as the information currency of the nervous 
system, such studies are usually concerned with achieving a 
target train of spike times. However, as a matter of practical 
concern, some jitter in the elicited spike times is tolerated, 
whether explicitly as in [43] or by means of a quadratic penalty 
between a spike time and the next desired spike in a train [44]. 
For this reason, the problem of controlling spike times can be 
reconceptualized as a problem of controlling a time-varying 
pattern of firing rate, where the timescale of rate variation 
depends upon the tolerated jitter in spike timing. Therefore, 
while we have chosen to tackle the problem of manipulating 
instantaneous firing rate, the design methodology laid out here 
could in principle be applied to the problem of controlling 
spike times, where the allowable jitter sets the timescale over 
which desired spike times are smoothed into a rate function 
that is fed to the control loop as a reference (e.g. [41]).

However, we have presently tasked a control system with 
tracking not precise spike timing, but relatively slow patterns of 
rate modulation (1–10 Hz). Therefore, in this study we are not 
exercising control over spiking at timescales faster than approx­
imately 100 ms. Notable rate modulation in this slower range 
of timescales occurs across neural systems, including in the 
context of active sensation [45, 46], hippocampal theta-phase 
precession [47], and movement [48]. The ability to insert such 
patterns of rate modulation would enable causal investigation 
into how instantaneous rate affects the function of such sys­
tems. Moreover, the basic framework developed here could be 
extended to finer timescales, opening up additional avenues of 
investigation that revolve around questions of precision timing.

The choice to use firing rate as the controlled output of 
the system necessitated an observer designed for estimating 

this quantity from noise-corrupted measurements in the form 
of spikes. In the interest of simplicity needed for widespread 
adoption of this technique, we designed the observer in a 
model-free manner, without taking into account any depend­
ence of the rate on inputs to the system. The obvious benefit 
of this approach is that it allows an experimenter to design 
this part of the control loop prior to the experiment, and it is 
simple to implement. However, given the point process nature 
of the measurements, this approach is not ideal for recovering 
time-varying rates, depending on the timescale of rate modu­
lation. This is especially true of low firing rate regimes: e.g. at 
modulation frequencies greater than approximately 2 Hz, with 
an average rate of 20 spikes s−1 (figure 3), where estimates 
become increasingly poor.

Given the difficulty of accurate rate estimation at higher 
frequencies of rate modulation, we took the practical approach 
of designing the controller with the observer in the loop. That 
is to say, we did not make the customary assumption that we 
could design the controller for the case where the latent state/
controlled output (here, λ) was known. Instead, a Poisson 
spike generator and observer were included in the simulated 
control loop when tuning the PI controller. By minimizing the 
error between the measured spiking and the reference at fre­
quencies of interest for control, we endeavored to safeguard 
performance of the final closed-loop system against delete­
rious effects of imperfect online rate estimation.

Another design choice made in this study was to modulate 
the amplitude of optical input to the system directly. While 
channelrhodopsin is most often stimulated using pulsatile 
inputs, our choice to use feedback to modulate the ampl­
itude of light was made on the basis that it requires the fewest 
design decisions for the experimenter. In contrast to contin­
uous modulation of amplitude, manipulating pulsatile inputs 
would require a mapping between the control signal and pulse 
amplitude, width, and frequency. That said, there is nothing 
preventing the details of the methodology laid out here to be 
applied to the modulation of a single pulse parameter such 
as amplitude or width. We expect that pulsatile and contin­
uously-modulated modes of optical stimulation will have 
differential effects on higher-order aspects of activity such as 
local population synchrony [19]. While a robust way to stimu­
late channelrhodopsin-expressing cells, pulsatile inputs may 
not suit all control applications, such as manipulating sub­
threshold neuron polarization. Another alternative to contin­
uous modulation or modulation of pulsatile inputs would be to 
wait to update the stimulation intensity each time the neuron 
spikes, as in [42]. In either case, the current methodology may 
still be applied if the simulations used for controller tuning 
were altered to reflect the chosen implementation of the con­
trol signal.

In this study, we have demonstrated the successful use of 
a single-degree-of-freedom controller for tracking a time-var­
ying trajectory of interest. In such a system, the designed con­
troller is necessarily a compromise between feeding forward 
an optimally transformed version of the reference and making 
best use of feedback to attenuate the influence of disturbances. 
In this case, the goal of the design procedure was tracking 
a time-varying reference trajectory. The success of such a 
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simple approach is noteworthy in that it indicates scaling of 
the reference trajectory is a reasonable first-order approach 
to stimulus design for the desired rate modulation, while the 
feedback signal ensured tracking at or near DC by providing 
the appropriate bias to this input. The downside of the use of 
a single-degree-of-freedom controller and tuning for trajec­
tory tracking is that there are no explicit constraints put on the 
response to load disturbances or other changes in the system. 
Satisfying requirements on both reference tracking and dis­
turbance rejection independently begs for a two-degree-of-
freedom control strategy [49].

Since the predominant manner in which stimulation is 
applied to neural systems is through either open-loop con­
trol or on/off closed-loop control [6, 11, 12, 16, 17, 50], we 
have compared the effectiveness of our current approach to 
an open-loop strategy. The principal reason one might utilize 
feedback continuously would be to adjust for disturbances, 
whether these come in the form of unmeasured inputs to the 
system or changes in the underlying dynamics. Although not 
an explicit goal of controller tuning in this study, the use of 
feedback does, of course, grant some robustness to such distur­
bances. As shown previously for the static reference case [19] 
and again here in the case of a time-varying reference (figure 
2), the use of feedback enables effective control even in the 
face of uncontrolled input to the system in the form of sensory 
drive. However, a noteworthy limitation of the current single 
excitatory opsin approach is the inability to actively inhibit 
neural activity. As a consequence, disturbances which raise 
the firing rate above the desired rate at timescales of interest 

for control will not be effectively rejected. This scenario will 
necessitate a two-input approach, whether it be expression of 
both inhibitory and excitatory opsins or expression of opsins 
targeted to inhibitory neurons. Notably, this extension will 
require additional modeling for capturing effects of inhibitory 
inputs (whether direct or indirectly mediated through inhibi­
tory neurons) as well as design of multi-input controllers.

Aside from the ability to reject disturbances, another dif­
ference between the results of closed- versus open-loop 
stimulation highlighted in figure  2 and again in figure  8 is 
a reduction in across-trial variability provided by reactively 
updating stimulation in real-time. Given that stimulation of 
neural systems is often plagued by response variability, this 
effect of closed-loop stimulation will certainly be a positive 
for many applications. However, it is also the case that there 
is naturally-occurring variability in spiking within a given cell 
and across a population [38, 51, 52]. There may be scenarios, 
such as artificial stimulation aimed at naturalistic perception, 
in which variability will be an important goal for control. 
Since adding response-variability will be an easier task than 
reducing it, the current approach represents a good initial step 
toward a more nuanced control of neural activity.

We have shown that it is feasible to undergo a brief period 
of system identification followed by controller tuning in sim­
ulation within the timespan of an experiment. The fact that 
the LNP models used for this process were often poor predic­
tors of the input-output relationship in the open-loop sense 
and yet closely predicted the performance of the closed-loop 
system highlights the need to assess the goodness of a model 

Figure 8.  Non-sinusoidal tracking performance. (A) Example implementation (‘Cell 5’) on the more naturalistic, non-sinusoidal trajectory. 
Controller and observer were tuned for a 10 Hz sinusoidally modulated trajectory. The corresponding error spectrum is also shown 
(bottom). For comparison, the error spectrum of simulated Poisson firing at the reference rate is plotted in light grey. (B) Population 
tracking error for non-sinusoidal trajectory. 95% confidence intervals for this metric are calculated for simulated Poisson firing at the 
reference rate and plotted in light grey. Left, simulated LNP performance predicted by design procedure. Middle, experimental closed-loop 
tracking performance. Right, experimental open-loop tracking performance. (C) Experimental across-trial variability in closed-loop versus 
open-loop. Treating 750 ms onward as ‘steady-state’, time-averaged Fano factor calculated in a 250 ms sliding window for the closed- 
versus open-loop control cases.
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in the context of its intended use. If, for example, the use of a 
mathematical model is purely as a tool for design rather than 
for making mechanistic inferences, then more complicated 
models that may be more accurate but also more difficult to 
estimate may prove unnecessary.

Since the controller was designed around an identified 
model for the system, it is important to ask how sensitive, 
or conversely how robust, control system performance is to 
model inaccuracy. If the resulting design is sensitive to small 
deviations in estimated parameters, either the modeling/
system identification approach or the control scheme should 
be modified accordingly. Here, we have found that even with 
often inaccurate LNP models, we achieved reasonable con­
troller performance (figures 7 and 8). Although closed-loop 
stimulation does relax the requirements for model accuracy, 
we have also shown that something as simple as inaccurate 
estimation of static gain of the LNP model can have delete­
rious effects on control performance in the case of a time-
varying reference signal. Importantly, changes in response 
properties such as gain and baseline firing rate often occur 
over time in neural systems in the contexts of sensory adapta­
tion [53–56], level of arousal [57], etc. It is noteworthy that 
changes in response gain observed in thalamic neurons in the 
context of sensory input (e.g. [53, 56]) are often on par or 
greater than those observed here in the context of optogenetic 
stimulation. Therefore, the question of controller robustness 
will be important moving forward.

5.  Conclusions

In the present study, we have found that when appropriately 
tuned, the simple exponential filter and PI controller frame­
work used by Newman [19] to maintain a constant firing 
rate can also be effective for eliciting dynamic firing rate 
trajectories. The strength of this approach lies in its relative 
simplicity, which should render it readily adoptable for the 
neuroscience community. With the availability of an open-
source platform for real-time control of electrophysiology 
(RTXI, [58]), the design methodology laid out here should 
enable widespread application of closed-loop control to opto­
genetics experiments.

Of particular note is the fact that the simple models used 
for controller tuning could be poor predictors of the light-to-
spiking transformation and still prove useful. This phenom­
enon highlights that it is not neccessary in all contexts to fit the 
best possible mathematical model. Instead, modelling deci­
sions should be made in light of the intended end use, where 
considerations such as expedience or mathematical tracta­
bility may be of great importance. Indeed, it is possible that 
in the context of this study, an even simpler model structure 
could have sufficed. Moreover, the finding that closed-loop 
optogenetic stimulation can reduce spike-count variability at 
the timescales investigated highlights the technique’s utility 
for more reliable electrophysiological recordings and opens 
the door to control strategies that make variability explicit 
goals of the design process. Taken together, the methodology 
developed in this study will lay the groundwork for more 

refined use of optogenetic stimulation and may enable a new 
class of experiments aimed at elucidating the functional roles 
of neural populations in networks.
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