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Temporal precision in the neural code and the
timescales of natural vision
Daniel A. Butts1,2, Chong Weng3, Jianzhong Jin3, Chun-I Yeh3,4, Nicholas A. Lesica1, Jose-Manuel Alonso3

& Garrett B. Stanley1

The timing of action potentials relative to sensory stimuli can be
precise down to milliseconds in the visual system1–7, even though
the relevant timescales of natural vision are much slower. The
existence of such precision contributes to a fundamental debate
over the basis of the neural code and, specifically, what timescales
are important for neural computation8–10. Using recordings in the
lateral geniculate nucleus, here we demonstrate that the relevant
timescale of neuronal spike trains depends on the frequency
content of the visual stimulus, and that ‘relative’, not absolute,
precision is maintained both during spatially uniform white-
noise visual stimuli and naturalistic movies. Using information-
theoretic techniques, we demonstrate a clear role of relative
precision, and show that the experimentally observed temporal
structure in the neuronal response is necessary to represent
accurately the more slowly changing visual world. By establishing
a functional role of precision, we link visual neuron function on
slow timescales to temporal structure in the response at faster
timescales, and uncover a straightforward purpose of fine-
timescale features of neuronal spike trains.

Figure 1a illustrates one of the many contexts in which millisecond
precision has been observed in neuronal responses, showing the res-
ponse of a geniculate neuron to repeated presentations of a spatially
uniform white-noise visual stimulus (SUN). This remarkable pre-
cision at millisecond timescales has been observed in the retina2,7,
the lateral geniculate nucleus (LGN)5,6 and the visual cortex1,3,10 as well
as in many other sensory systems such as the fly visual system4,9, the
electrosensory system of the weakly electric fish11, and the mammalian
somatosensory12,13 and auditory systems14. Although the presence of
such fine temporal structure in the neuronal response would not be
surprising if the sensory stimulus had similar temporal structure, its
role is less clear in the mammalian visual system in which relevant
visual stimuli are typically on much slower timescales. In particular,
visual perception is ultimately limited by the relatively slow integration
time of photoreceptors, which, for example, results in the appearance
of continuous motion from the flickering images that constitute a
movie. As a result, the much finer temporal structure in visual neuron
responses has been proposed to be evidence for ‘temporal encoding’,
which postulates that particular temporal patterns in the spike train
carry additional information about the visual stimulus8,15.

If millisecond temporal structure is important for the representa-
tion of visual information, one might expect it to be preserved in
more natural stimulus conditions. Figure 1b shows the response of
the same neuron in Fig. 1a responding to a ‘natural movie’ stimulus
(see Methods)16. Although the response of the neuron still consists of
discrete firing ‘events’, all relevant measures of event timing, ranging
from the amount of trial-to-trial variability in timing of the first

spike (‘first-spike jitter’) to the overall event duration, are signifi-
cantly slower during the natural movie versus during SUN (Supple-
mentary Information 2). However, the increased response timescales
are nearly matched by the increased timescales of the stimulus filtered
by the receptive field of the neuron, because both the stimulus itself
and the temporal filtering of the receptive field become slower in
natural movies (Supplementary Information 1). By comparing the
timescale of the ‘filtered stimulus’ tFS with that of the response tR

during the SUN and the natural movie stimuli (Fig. 1c, d), we observe
that ‘relative’ precision (defined as the ratio of the characteristic
timescales of the filtered stimulus and neural response) is maintained
at a level of 2–4 during both SUN and natural stimuli by all neurons
in our study (Fig. 1e, f).
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Figure 1 | The timescale of the neuronal response depends on the nature of
the visual stimulus, defining relative precision. a, b, LGN X-cell responses
(spike rasters) over 60 repeated trials in response to SUN (a) and natural
movie stimuli (b). c, d, Corresponding time courses of the filtered stimulus
(arbitrary units, with threshold shown as dashed line), PSTH (see Methods)
and RF (receptive field) prediction. e, f, Left: comparison of the filtered
stimulus and response timescales (tFS and tR, respectively) across the
population of LGN neurons studied, for SUN (e, n 5 49) and natural movies
(f, n 5 32). Right: the consistent ratio between these timescales (shown as
mean 6 s.d.) defines the level of relative precision.
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Several information-based studies of retinal and geniculate spike
trains in response to SUN have demonstrated that millisecond pre-
cision conveys additional information about the visual stimulus5–7.
However, we observe that—although still ‘precise’ in both stimulus
contexts—the response timescale itself nearly quadruples from an
average of 2.8 ms in the context of SUN to 10.1 ms in the natural
movie. This suggests that any functional role of temporal precision
cannot depend on fixed temporal features in the LGN response, and
raises the question of whether the extra information that is encoded
at millisecond timescales disappears altogether in more natural
contexts. To address this question, we must first understand what
this millisecond-timescale information represents about the visual
stimulus. We investigated this using a ‘realistic model’ that repro-
duces the observed temporal features and trial-to-trial variability
of LGN spike trains in the context of SUN (see Supplementary
Information 3)17. Both the timescale of this model’s filtered stimulus
(7.1 ms) and its response (1.6 ms) are in the range of experimental
observations (Fig. 1e), giving a relative precision of 4.5; its spike train
also carries a typical amount of information6.

Notably, the relative precision of the model can be varied system-
atically (Fig. 2a) from infinite precision (blue) to a relative precision
of 4.5 (green; realistic model) and to a relative precision of 1 (red;
matching the response timescale to the filtered stimulus timescale),
without changing how the stimulus itself is processed by the receptive
field. We evaluate the effects of precision on the information content

of the spike train using the single-spike information rate ISS (ref. 18),
which is a first-order approximation to the full mutual informa-
tion6,19 and reflects the more general dependence of mutual informa-
tion measures on response timescales. By systematically varying the
precision, this analysis reveals what at first seems to be a paradoxical
effect of precision: information about the stimulus grows without
bound with increasing precision (Fig. 2b, note the log-scaling of the
horizontal axis), even though no information can be created through
spike generation that does not already exist at the level of the filtered
stimulus20.

To understand the nature of this literally boundless amount of
information that becomes available with increasing precision, con-
sider that, for a temporally varying stimulus, there is information to
be gained in distinguishing between a stimulus s(t) and its temporally
shifted ‘twin’ s(t 1Dt) for any time shift Dt, regardless of the scale of
the stimulus features (Fig. 2c). Despite this conceptual distinction
between stimuli, as Dt becomes vanishingly small, s(t)<s(t 1Dt).

To formalize this intuition, it is necessary to apply more traditional
measures of information between stimulus and response, based on
linear stimulus reconstruction. The quality of the reconstruction is
barely affected by the level of variability of the realistic model (Fig. 2d,
middle), whereas increasing the temporal jitter such that the relative
precision is decreased to 1 significantly degrades the reconstruction
(Fig. 2d, bottom). This can be quantified by the reconstruction
information IREC (refs 8, 21 and 22), which explicitly measures
how much information about the stimulus can be recovered from
the observed neuronal response using linear reconstruction. Unlike
the single-spike information, the reconstruction information satu-
rates at high precision (Fig. 2e), such that the response precision of
the realistic model (green dashed line) is sufficiently high to capture
the available IREC.

What is surprising is that, although the stimulus reconstruction is
based on the receptive field function at the timescales of the filtered
stimulus (Fig. 2e, red dashed line), we see that the neuron’s response
must be significantly more precise to recover the full reconstruction
information. Conversely, nearly half of the available information is
lost if the response timescale is only dictated by the filtered stimulus.
Thus, these results recapitulate the dichotomy between the timescales
of receptive field function and the precision of the response.

As Fig. 2c implies, the frequency content of the stimulus deter-
mines the temporal scale at which the response must be specified to
reconstruct the stimulus faithfully. The reconstruction information
can be explicitly decomposed as a function of frequency using the
coherence c2(f) between the stimulus and the reconstructed stimulus.
The coherence for the precise model neuron is compared to the
coherence when the model’s precision is degraded by adding tem-
poral jitter to its spike train (Fig. 3a). Decreased precision has the
largest effect on the highest stimulus frequencies represented, and a
simple relationship emerges when considering the relationship
between the coherence of the precise model spike trains and the
coherence of the jittered spike trains (Fig. 3b). As derived in Sup-
plementary Information 4, the frequency scale of the degradation of
the reconstruction (denoted here as the ‘attenuation frequency’, fA) is
directly related to the amount of temporal jitter in the neural res-
ponse. This relationship provides a general guideline for understand-
ing which filtered stimulus frequencies can be reconstructed for a
certain amount of response jitter. For example, an LGN neuron
recorded in the context of the natural movie has a filtered stimulus
with frequency content up to 20 Hz (Fig. 3c and Supplementary Infor-
mation 4). This frequency maps to a jitter of 6.2 ms (12.4-ms time-
scale), which nearly matches the observed timescale of the neuron’s
response (Fig. 3d). Furthermore, the experimentally measured IREC

degrades for larger magnitudes of jitter, suggesting that the precision
observed during the natural movie is just enough to avoid disrupting
the information available to linear stimulus reconstruction.

Owing to the spatiotemporal nature of LGN receptive fields, the
requirement for temporal precision also applies to the ability to
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Figure 2 | Precision is necessary to convey information about visual
stimuli. a, Resulting PSTH as the temporal precision of the LGN spike train
is systematically varied. b, Single-spike information ISS increases without
bound with increasing precision. c, Jittering a reconstructed stimulus by Dt
has a greater effect for fine (right) than for coarse (left) stimulus features.
d, Jitter affects the reconstruction quality at a relative precision of 1
(bottom), but has negligible influence at a relative precision of 4.5 (middle).
The stimulus is scaled such that its variance over time is unity, establishing
the scale of the y axis. e, IREC reveals that response timescales much finer
than that of the stimulus (red) are necessary to maximize the neuron’s linear
representation of the stimulus.
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represent spatial aspects of the stimulus. We consider a simple spa-
tiotemporal reconstruction using an array of model neurons, each
representing one pixel of the natural movie stimulus considered in
this paper16. Figure 3e shows single frames of the reconstructed movie
from this simulation using temporally precise neurons (left), neurons
with a relative precision of 2.3 (6.2-ms jitter, middle) and neurons
with a relative precision of 1 (14.5-ms jitter, right). Although this
stimulus only updates at 30 Hz (corresponding to 33-ms stimulus
frames), the degradation of the quality in the image from left to right
demonstrates that spatial information about the stimulus is repre-
sented at timescales finer than that of the stimulus. Furthermore,
at the spatial scale of individual receptive fields (Fig. 3f), a simple
‘edge detector’ demonstrates that boundaries of objects present in
the image become disrupted as precision decreases to 1. This has
clear implications for the necessary temporal sensitivity of cortical
neurons that receive direct input from the LGN, which are thought
to encode edges. To have access to the full amount of information
from their LGN inputs, they must be sensitive to these inputs at the
same level of precision, which in the natural movie is on the order of
10 ms.

Thus, we have demonstrated that the ‘classical’ function of visual
neurons—signalling stimuli in their receptive field—actually neces-
sitates the neural precision observed experimentally. Whereas it has
long been known that the timescales of visual neuron responses can
be modulated by the nature of the visual stimulus, the analysis
described here places this finding in the context of their functional
role: representation of the natural visual scene. This provides a link
between the timescales of natural vision (with frequency content
largely ,20 Hz owing to the filtering of LGN receptive fields, see
Supplementary Information 4) and response timescales on the order
of 10 ms, which are increasingly being observed in the cortex (for
example, cortical dendritic integration23, cortical synaptic plasti-
city24, spike-train-based discrimination25,26 and gamma-band modu-
lation of cortical fields27). In this light, LGN inputs to the cortex may
be at a suitable timescale for cortical computation, and understand-
ing the temporal structure of these inputs at the appropriate level of
precision may lead to a new perspective on cortical processing.

The observation that the timescales of neural responses are not
absolute indicates that downstream neurons cannot depend on fixed
temporal features of the response to encode the stimulus. Instead, we
demonstrate that the information in the spike train (at least at the
level of single spikes) is accessible through simple linear decoding,
which relies on relative precision rather than fixed temporal pattern-
ing. Although this study does not preclude the existence of more
complicated explanations for visual neuron precision that extend
beyond receptive-field function (that is, ‘temporal encoding’15) or
across populations22,28,29, it demonstrates that precision is not by itself
evidence for such ideas. In this sense, our results establish stronger
criteria that ‘temporal encoding’ must satisfy to demonstrate a func-
tional role above and beyond straightforward receptive-field-based
processing.

Relative precision may be a general feature of sensory neuron
communication, in which an analogue input (the sensory stimulus)
is encoded by what is essentially a digital signal (the neuron’s spike
train). In this context, temporal precision of neuronal responses is
conceptually similar to the problem of digital sampling, in which
encoding frequencies must be at least double that of the analogue
signal information because of the Nyquist limit8,30. From this per-
spective, the mechanisms that generate neuronal precision (Supple-
mentary Information 3), which seem to make the encoding of visual
information more complicated, may actually serve to provide easier
means for downstream neurons to decode this information.

METHODS SUMMARY

Data were recorded extracellularly from layer A of the LGN of anaesthetized

paralysed cats. Individual units were classified as X or Y according to their

responses to counterphase sinusoidal gratings.

The SUN stimuli were 120 Hz gaussian white noise with an r.m.s. (root-mean-

squared) contrast of 0.55. The naturalistic movie was generated by a camera

mounted to the head of a cat roaming in a forest, provided by the König labor-

atory (Institute of Neuroinformatics, ETH/UNI Zürich, Switzerland)16. It was

modified so that each frame had the same mean luminance and an r.m.s. contrast

of 0.4, and was updated at 60 Hz. All stimuli were presented on a cathode-ray

tube display with a 120 Hz monitor refresh rate; we verified that the monitor

refresh did not affect our results (Supplementary Information 5).

The receptive field predictions were based on ‘linear–non-linear’ (LN) models,

estimated using standard techniques (Supplementary Information 1). The fil-

tered stimulus is the linear convolution of the stimulus with the receptive field.

Filtered stimulus and response peri-stimulus time histogram (PSTH) timescales

(tFS and tR) were derived from their autocorrelation functions (Supplementary

Information 1).

The parameters of the realistic model LGN neuron were provided by M.

Meister17. Precise model responses were generated from the realistic model by

identifying individual spikes across trials and shifting each spike to its average

time over all trials in which it was present. The amount of each shift was then

scaled to change the level of precision (Fig. 2). The spatiotemporal simulation

(Fig. 3e, f) consisted of realistic model neurons modified to have measured

spatiotemporal receptive fields (Supplementary Information 1) and assembled

into two 160 3 120 overlapping arrays (ON and OFF). Edge detection (Fig. 3f)
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Figure 3 | Precision is necessary to represent relevant stimulus
frequencies. a, Coherence between SUN and its reconstruction in models
with varying amounts of jitter. b, Ratio of coherence between jittered and
precise models, defining the attenuation frequency fA. c, Power in the natural
movie filtered by a measured X-cell receptive field. d, Reconstruction
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was performed by measuring the difference between each pixel and the average of
the surrounding pixels.

The single-spike information rate18 was calculated directly from the PSTH,

and the reconstruction information IREC was calculated from the coherence c2(f )
between the stimulus and the reconstructed stimulus: IREC 5 2# df log2[1–c2(f )].

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.

Received 20 February; accepted 16 July 2007.

1. Bair, W. & Koch, C. Temporal precision of spike trains in extrastriate cortex of the
behaving macaque monkey. Neural Comput. 8, 1185–1202 (1996).

2. Berry, M. J. II & Meister, M. Refractoriness and neural precision. J. Neurosci. 18,
2200–2211 (1998).

3. Buracas, G. T., Zador, A. M., DeWeese, M. R. & Albright, T. D. Efficient
discrimination of temporal patterns by motion-sensitive neurons in primate visual
cortex. Neuron 20, 959–969 (1998).

4. Lewen, G. D., Bialek, W. & de Ruyter van Steveninck, R. R. Neural coding of
naturalistic motion stimuli. Network 12, 317–329 (2001).

5. Liu, R. C., Tzonev, S., Rebrik, S. & Miller, K. D. Variability and information in a neural
code of the cat lateral geniculate nucleus. J. Neurophysiol. 86, 2789–2806 (2001).

6. Reinagel, P. & Reid, R. C. Temporal coding of visual information in the thalamus.
J. Neurosci. 20, 5392–5400 (2000).

7. Uzzell, V. J. & Chichilnisky, E. J. Precision of spike trains in primate retinal ganglion
cells. J. Neurophysiol. 92, 780–789 (2004).

8. Borst, A. & Theunissen, F. E. Information theory and neural coding. Nature
Neurosci. 2, 947–957 (1999).

9. de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R. & Bialek, W.
Reproducibility and variability in neural spike trains. Science 275, 1805–1808
(1997).

10. Mainen, Z. F. & Sejnowski, T. J. Reliability of spike timing in neocortical neurons.
Science 268, 1503–1506 (1995).

11. Gabbiani, F., Metzner, W., Wessel, R. & Koch, C. From stimulus encoding to
feature extraction in weakly electric fish. Nature 384, 564–567 (1996).

12. Boloori, A. R. & Stanley, G. B. The dynamics of spatiotemporal response
integration in the somatosensory cortex of the vibrissa system. J. Neurosci. 26,
3767–3782 (2006).

13. Phillips, J. R., Johnson, K. O. & Hsiao, S. S. Spatial pattern representation and
transformation in monkey somatosensory cortex. Proc. Natl Acad. Sci. USA 85,
1317–1321 (1988).

14. Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens spike
timing in auditory cortex. Nature 426, 442–446 (2003).

15. Theunissen, F. & Miller, J. P. Temporal encoding in nervous systems: a rigorous
definition. J. Comput. Neurosci. 2, 149–162 (1995).

16. Kayser, C., Salazar, R. F. & Konig, P. Responses to natural scenes in cat V1.
J. Neurophysiol. 90, 1910–1920 (2003).

17. Keat, J., Reinagel, P., Reid, R. C. & Meister, M. Predicting every spike: a model for
the responses of visual neurons. Neuron 30, 803–817 (2001).

18. Brenner, N., Strong, S. P., Koberle, R., Bialek, W. & de Ruyter van Steveninck, R. R.
Synergy in a neural code. Neural Comput. 12, 1531–1552 (2000).

19. Pola, G., Thiele, A., Hoffmann, K. P. & Panzeri, S. An exact method to quantify the
information transmitted by different mechanisms of correlational coding. Network
14, 35–60 (2003).

20. de Ruyter van Steveninck, R. & Laughlin, S. B. The rate of information transfer at
graded-potential synapses. Nature 379, 642–645 (1996).

21. Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Reading a
neural code. Science 252, 1854–1857 (1991).

22. Dan, Y., Alonso, J. M., Usrey, W. M. & Reid, R. C. Coding of visual information by
precisely correlated spikes in the lateral geniculate nucleus. Nature Neurosci. 1,
501–507 (1998).

23. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal
integration. Nature 375, 682–684 (1995).

24. Fu, Y. X. et al. Temporal specificity in the cortical plasticity of visual space
representation. Science 296, 1999–2003 (2002).

25. Narayan, R., Grana, G. & Sen, K. Distinct time scales in cortical discrimination of
natural sounds in songbirds. J. Neurophysiol. 96, 252–258 (2006).

26. Chichilnisky, E. J. & Kalmar, R. S. Temporal resolution of ensemble visual motion
signals in primate retina. J. Neurosci. 23, 6681–6689 (2003).

27. Womelsdorf, T., Fries, P., Mitra, P. P. & Desimone, R. Gamma-band
synchronization in visual cortex predicts speed of change detection. Nature 439,
733–736 (2006).

28. Ahissar, E. & Arieli, A. Figuring space by time. Neuron 32, 185–201 (2001).
29. VanRullen, R., Guyonneau, R. & Thorpe, S. J. Spike times make sense. Trends

Neurosci. 28, 1–4 (2005).
30. Lazar, A. A. Perfect recovery and sensitivity analysis of time encoded bandlimited

signals. IEEE Trans. Circ. Syst. 51, 2060–2073 (2004).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements This work was supported by a Charles King Trust
Postdoctoral Fellowship (Bank of America, Co-Trustee, Boston; D.A.B), by the
NGIA (D.A.B., N.A.L., G.B.S.), by the NIH and by the SUNY Research Foundation
(C.W., J.J., C.-I.Y., J.-M.A.). We thank M. Goldman, M. Meister, G. Desbordes and
A. Boloori for comments on the manuscript, C. Kayser for providing the
natural-scene movies, and P. Wolfe for discussions regarding sampling issues.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Correspondence and requests for materials should be addressed to D.A.B.
(dab2024@med.cornell.edu).

NATURE | Vol 449 | 6 September 2007 LETTERS

95
Nature   ©2007 Publishing Group

www.nature.com/nature
www.nature.com/nature
www.nature.com/reprints
mailto:dab2024@med.cornell.edu


METHODS
Experimental procedures. Surgical and experimental procedures were per-

formed in accordance with United States Department of Agriculture guidelines

and were approved by the Institutional Animal Care and Use Committee at the

State University of New York, State College of Optometry. As described in detail

in ref. 31, cats were initially anaesthetized with ketamine (10 mg kg–1 intramus-

cular) followed by thiopental sodium (20 mg kg–1 intravenous during surgery

and at a continuous rate of 1–2 mg kg–1 h–1 intravenous during recording; sup-

plemented as needed). A craniotomy and duratomy were performed to intro-

duce recording electrodes into the LGN (anterior, 5.5; lateral, 10.5). Animals
were paralysed with atracurium besylate (0.6–1 mg kg–1 h–1 intravenous) to

minimize eye movements, and were artificially ventilated. LGN responses were

recorded extracellularly within layer A. Recorded voltage signals were conven-

tionally amplified, filtered and passed to a computer running the RASPUTIN

software package (Plexon). For each cell, spike waveforms were identified ini-

tially during the experiment and were verified carefully off-line by spike-sorting

analysis. Cells were classified as X or Y according to their responses to counter-

phase sinusoidal gratings. Cells were eliminated from this study if they did not

have at least 2 Hz mean firing rates in response to all stimulus conditions, or if

the maximum amplitude of their spike-triggered average in spatiotemporal

white noise was not at least five times greater than the amplitude outside of

the receptive field area.

Visual stimuli. SUN stimuli consisted of spatially uniform luminances ran-

domly selected from a gaussian distribution with zero mean (corresponding to

the midway point of the full range of monitor luminance) and a root-mean-

squared (r.m.s.) contrast of 0.55, presented at 120 Hz. The naturalistic movie

sequence was recorded using a removable lightweight CCD camera mounted to

the head of a freely roaming cat in natural environments such as grassland and
forest16. A 48 3 48 windowed area was processed to play at 60 Hz and to have a

constant mean and standard deviation of luminance for each frame (contrast

held at 0.4 of maximum)32. All stimuli were displayed on a cathode-ray tube

display at a resolution of 0.2u per pixel with a monitor refresh rate of 120 Hz.

Care was taken to ensure that the potential effects of phase-locking to the

monitor refresh did not affect the results (Supplementary Information 5).

Receptive-field-based predictions and the filtered stimulus. The receptive

field predictions (Fig. 1c, d) were based on linear–non-linear (LN) models that

were estimated using standard techniques (see Supplementary Information 1).

Temporal-only receptive fields were estimated directly from responses to SUN,

whereas we used 60 Hz spatiotemporal binary noise to map the spatiotemporal

receptive field. The filtered stimulus (for example, Fig. 1c, d) is defined as the

linear convolution of the stimulus with the receptive field, and represents how

similar the stimulus is to the receptive field at a particular time. It is scaled to have

a standard deviation of unity for a given stimulus class, and is mapped to a firing

rate through a ‘static non-linearity’ also using standard techniques (Supplemen-

tary Information 1).

Timescale of filtered stimulus and PSTH. The PSTH was estimated from 60 or

120 repeated trials, and was subsequently used to estimate response timescales

and single-spike information (Supplementary Information 1).

The ‘realistic’ and ‘precise’ models. The parameters of the realistic model used

in this paper were provided by M. Meister, originating from a fit to a represent-

ative cat LGN cell (neuron number 6 in ref. 17) recorded under similar experi-

mental conditions to those used here. The precise model responses were

generated from the realistic model spike times over 1,000 repeated trials by

identifying individual spikes across trials and shifting each spike to agree with

its average time over all trials in which it appeared. The amount of each shift of

each spike from the precise model was then scaled to generate models with any

amount of precision (Fig. 2).

Linear reconstruction. The optimal linear reconstruction filter h(t) corre-

sponds to the temporal filter that minimizes the mean-squared difference

between the stimulus s(t) and the reconstructed stimulus s*(t) (refs 8 and 21).

The reconstruction filters were estimated numerically for a given stimulus and

set of experimentally observed spike times.

Information measurements. The single spike information rate18 is given by:

ISS S,l½ �~l0

ð
dt

l tð Þ
l0

� �
log2

l tð Þ
l0

� �
ð1Þ

In equation (1), l(t) is the instantaneous firing rate characterized by the PSTH,

and l0 is the mean firing rate. The reconstruction information IREC is calculated

from the coherence spectra c2(f) between stimulus s(t) and reconstructed stimu-

lus s*(t): IREC 5 2# df log2[12c2(f )]. In the case of the natural movie recon-

struction, only the reconstruction information of the centre pixel of the receptive

field is reported.

LGN model neurons and natural movie simulation. We used a 160 3 120 array

of precise neurons with the same parameters as the precise model of Fig. 2, except

we replaced the purely temporal receptive field with a measured spatiotemporal

receptive field. The spatial components were spatially shifted for each neuron to

tile a 160 3 120 spatiotemporal stimulus derived from the same natural movie.

An ON centre cell and an OFF centre cell were simulated at each position, and

each pixel was independently reconstructed into a 160 3 120 image evolving

over time using the resulting spike trains.

31. Weng, C., Yeh, C. I., Stoelzel, C. R. & Alonso, J. M. Receptive field size and
response latency are correlated within the cat visual thalamus. J. Neurophysiol. 93,
3537–3547 (2005).

32. Lesica, N. A. et al. Dynamic encoding of natural luminance sequences by LGN
bursts. PLoS Biol. 4, e209 (2006).
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